首页 > 论文 > 激光与光电子学进展 > 57卷 > 9期(pp:93006--1)

激光诱导击穿光谱技术检测油茶炭疽病

Detection of Anthracnose in Camellia Oleifera Based on Laser-Induced Breakdown Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

炭疽病是油茶最常见的病害之一,因此对油茶炭疽病进行快速检测具有重要意义。提出了一种检测油茶叶片炭疽病的新方法,采用激光诱导击穿光谱检测技术,快速无损诊断正常和感染炭疽病油茶叶片中的Mn元素含量,根据火焰原子吸收光谱法对样品中Mn元素的真实含量进行了分析。分别采用平滑、去噪、归一化、基线校正、一阶求导降噪、二阶求导降噪对光谱数据进行预处理,使用偏最小二乘方法(PLS)建立定量模型,采用间隔偏最小二乘法(iPLS)对光谱数据进行波段筛选。最终结合7点平滑和一阶导数降噪进行预处理,根据iPLS建立定量模型。实验结果表明,平分为24个子区间时,第6个子区间的建模效果最佳,建模相关系数为0.9076,建模均方根误差为0.2090 μg/mg,预测相关系数为0.8947,预测均方根误差为0.2100 μg/mg。

Abstract

Anthracnose is one of the most common diseases of camellia oleifera, so it is of great significance to quickly detect it. In this paper, a new method for the detection of anthracnose in camellia anthracnose leaves is proposed. First, laser induced breakdown spectroscopy is used to quickly and non-destructively diagnose the Mn element content in the leaves of normal and infected anthracnose camellia oleifera leaves. The true content of Mn element in the samples is analyzed by flame atomic absorption spectrometry. Second, different pretreatment methods, such as smoothing, denoising, normalization, baseline correction, first-order derivation noise reduction, and second-order derivation noise reduction, are used to preprocess the spectral data. Partial least squares (PLS) method is used to establish a quantitative model. Interval partial least-squares regression (iPLS) method is utilized to filter the spectral data. Finally, combined with 7-point smoothing and first derivative noise reduction, the quantitative model is established based on iPLS. The results show that the modeling effect of the sixth subinterval is the best when it is divided into 24 subintervals, the modeling correlation coefficient is 0.9076, the modeling root mean square error is 0.2090 μg/mg, the prediction correlation coefficient is 0.8947, and the prediction root mean square error is 0.2100 μg/mg.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O657.3

DOI:10.3788/LOP57.093006

所属栏目:光谱学

基金项目:国家自然科学基金、南方山地果园智能化管理技术与装备协同创新中心项目、江西省教育厅科学技术研究项目;

收稿日期:2019-09-05

修改稿日期:2019-09-26

网络出版日期:2020-05-01

作者单位    点击查看

刘燕德:华东交通大学光机电技术及应用研究所, 江西 南昌 330013
高雪:华东交通大学光机电技术及应用研究所, 江西 南昌 330013
程梦杰:华东交通大学光机电技术及应用研究所, 江西 南昌 330013
侯兆国:华东交通大学光机电技术及应用研究所, 江西 南昌 330013
林晓东:华东交通大学光机电技术及应用研究所, 江西 南昌 330013
徐佳:华东交通大学光机电技术及应用研究所, 江西 南昌 330013

联系人作者:刘燕德(jxliuyd@163.com)

备注:国家自然科学基金、南方山地果园智能化管理技术与装备协同创新中心项目、江西省教育厅科学技术研究项目;

【1】Yang X L, Hu G Z, Hu H M. Camellia is the king of wood oil Green China[J]. 0, 2017(22): 70-71.
杨兴良, 胡国祖, 胡禾民. 油茶木本油料之王 绿色中国[J]. 0, 2017(22): 70-71.

【2】Qin S Y, Rong J, Zhang W J, et al. Cultivation history of camellia oleifera and genetic resources in the Yangtze River Basin [J]. Biodiversity Science. 2018, 26(4): 384-395.
秦声远, 戎俊, 张文驹, 等. 油茶栽培历史与长江流域油茶遗传资源 [J]. 生物多样性. 2018, 26(4): 384-395.

【3】Ding S, Pan P, Zhang B W, et al. Analysis on the development characteristics of camellia oleifera industry during the “twelfth five-year plan” period in China [J]. Journal of Fujian Forestry Science and Technology. 2018, 45(3): 116-120.
丁松, 潘鹏, 张邦文, 等. “十二五”期间我国油茶产业发展特征分析 [J]. 福建林业科技. 2018, 45(3): 116-120.

【4】Liao Y, Yan R, Cheng J, et al. Early physiological response to manganese ion with different concentrations and manganese tolerance of camellia oleifera seedlings [J]. Guihaia. 2015, 35(6): 922-929.
廖阳, 闫荣玲, 程俊, 等. 油茶幼苗对不同浓度锰离子的早期生理响应及其耐锰能力初探 [J]. 广西植物. 2015, 35(6): 922-929.

【5】Yu F M, Qi P Y, Liu K H, et al. Effects of lime on the growth and antioxidant enzyme system of camellia oleifera in manganese-contaminated soil [J]. Journal of Agro-Environment Science. 2019, 38(8): 1882-1890.
于方明, 漆培艺, 刘可慧, 等. 锰污染土壤石灰改良对油茶生长及抗氧化酶系统的影响 [J]. 农业环境科学学报. 2019, 38(8): 1882-1890.

【6】Wu N, Liu J N, Zhou G Y, et al. Prediction of chlorophyll content of leaves of oil camelliae after being infected with anthracnose based on VIS/NIR spectroscopy [J]. Spectroscopy and Spectral Analysis. 2012, 32(5): 1221-1224.
伍南, 刘君昂, 周国英, 等. 基于可见-近红外光谱技术的炭疽病侵染后油茶叶片叶绿素含量预测研究 [J]. 光谱学与光谱分析. 2012, 32(5): 1221-1224.

【7】Zeng Q D, Zhu Z H, Deng F, et al. Quantitative analyses of element Mn in iron using portable laser-induced breakdown spectroscopy with algorithm of background removal based on wavelet transform [J]. Acta Photonica Sinica. 2018, 47(8): 0847014.
曾庆栋, 朱志恒, 邓凡, 等. 便携式激光诱导击穿光谱结合小波变换去背景算法定量分析钢铁中Mn元素 [J]. 光子学报. 2018, 47(8): 0847014.

【8】Liu S M, Xiu J S, Liu Y Y. Rapid quantitative analysis of element content ratios in Cu(In, Ga)Se2 thin films using laser-induced breakdown spectroscopy [J]. Chinese Journal of Lasers. 2019, 46(9): 0911001.
刘世明, 修俊山, 刘云燕. 基于激光诱导击穿光谱技术的铜铟镓硒薄膜中元素含量比的快速定量分析方法 [J]. 中国激光. 2019, 46(9): 0911001.

【9】Zhang S Q, Han X Q, Miao Z Q, et al. Pathogen identification and two inoculation method of fusarium crown and root rot [J]. Acta Agriculturae Boreali-Sinica. 2017, 32(5): 124-129.
张尚卿, 韩晓清, 缪作清, 等. 番茄颈腐根腐病病原鉴定及2种接种方法的评价 [J]. 华北农学报. 2017, 32(5): 124-129.

【10】Wang J G, Li X Z, Li H H, et al. Influence of background deduction and intensity correction on spectral parameters of laser induced plasma [J]. Spectroscopy and Spectral Analysis. 2018, 38(1): 276-280.
王静鸽, 李新忠, 李贺贺, 等. 背景扣除和强度校正对激光诱导等离子体光谱参数的影响 [J]. 光谱学与光谱分析. 2018, 38(1): 276-280.

【11】Yan M G, Dong X Z, Li Y, et al. Classification of geological samples with laser-induced breakdown spectroscopy based on self-organizing feature map network and correlation discrimination analysis [J]. Spectroscopy and Spectral Analysis. 2018, 38(6): 1874-1879.
闫梦鸽, 董晓舟, 李颖, 等. 激光诱导击穿光谱的自组织特征映射结合相关判别对天然地质样品分类方法研究 [J]. 光谱学与光谱分析. 2018, 38(6): 1874-1879.

【12】Sobron P, Wang A, Sobron F. Dalangtan saline playa in a hyperarid region of Tibet plateau: III. correlated multiscale surface mineralogy and geochemistry survey [J]. Astrobiology. 2018, 18(10): 1277-1304.

【13】Sobron P, Wang A, Sobron F. Extraction of compositional and hydration information of sulfates from laser-induced plasma spectra recorded under Mars atmospheric conditions: implications for ChemCam investigations on Curiosity Rover [J]. Spectrochimica Acta Part B: Atomic Spectroscopy. 2012, 68: 1-16.

【14】Peng X T, Shi T Z, Song A H, et al. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods [J]. Remote Sensing. 2014, 6(4): 2699-2717.

【15】Hoehse M, Paul A, Gornushkin I, et al. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS [J]. Analytical & Bioanalytical Chemistry. 2012, 402(4): 1443-1450.

引用该论文

Liu Yande,Gao Xue,Cheng Mengjie,Hou Zhaoguo,Lin Xiaodong,Xu Jia. Detection of Anthracnose in Camellia Oleifera Based on Laser-Induced Breakdown Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(9): 093006

刘燕德,高雪,程梦杰,侯兆国,林晓东,徐佳. 激光诱导击穿光谱技术检测油茶炭疽病[J]. 激光与光电子学进展, 2020, 57(9): 093006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF