首页 > 论文 > Photonics Research > 8卷 > 7期(pp:1243-1252)

Polarization-enhanced AlGaN solar-blind ultraviolet detectors

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

AlGaN solar-blind ultraviolet detectors have great potential in many fields, although their performance has not fully meet the requirements until now. Here, we proposed an approach to utilize the inherent polarization effect of AlGaN to improve the detector performance. AlGaN heterostructures were designed to enhance the polarization field in the absorption layer, and a high built-in field and a high electron mobility conduction channel were formed. As a result, a high-performance solar-blind ultraviolet detector with a peak responsivity of 1.42 A/W at 10 V was achieved, being 50 times higher than that of the nonpolarization-enhanced one. Moreover, an electron reservoir structure was proposed to further improve the performance. A higher peak responsivity of 3.1 A/W at 30 V was achieved because the electron reservoir structure could modulate the electron concentration in the conduction channel. The investigation presented here provided feasible approaches to improve the performance of the AlGaN detector by taking advantage of its inherent property.

中国激光微信矩阵
补充资料

DOI:10.1364/PRJ.392041

所属栏目:Optoelectronics

基金项目:China National Funds for Distinguished Young Scientists10.13039/501100005153; National Natural Science Foundation of China10.13039/501100001809; Key Program of the International Partnership Program of CAS; Jilin Provincial ScienceTechnology Department; Youth Innovation Promotion Association of the Chinese Academy of Sciences10.13039/501100004739;

收稿日期:2020-03-05

录用日期:2020-06-02

网络出版日期:2020-06-03

作者单位    点击查看

Ke Jiang:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Xiaojuan Sun:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;e-mail: sunxj@ciomp.ac.cn
Zi-Hui Zhang:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
Jianwei Ben:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;Current Address: College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
Jiamang Che:Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
Zhiming Shi:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Yuping Jia:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Yang Chen:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Shanli Zhang:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Wei Lv:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
Dabing Li:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;e-mail: lidb@ciomp.ac.cn

联系人作者:Xiaojuan Sun(sunxj@ciomp.ac.cn); Dabing Li(lidb@ciomp.ac.cn);

备注:China National Funds for Distinguished Young Scientists10.13039/501100005153; National Natural Science Foundation of China10.13039/501100001809; Key Program of the International Partnership Program of CAS; Jilin Provincial ScienceTechnology Department; Youth Innovation Promotion Association of the Chinese Academy of Sciences10.13039/501100004739;

【1】Z. Y. Xu, H. P. Ding, B. M. Sadler and G. Chen. Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links. Opt. Lett. 33, 1860-1862(2008).

【2】W. J. Zhou, H. Li, X. Yi, J. Tu and J. H. Yu. A criterion for UV detection of AC corona inception in a rod-plane air gap. IEEE Trans. Dielectr. Electr. Insul. 18, 232-237(2011).

【3】R. Z. Yuan and J. S. Ma. Review of ultraviolet non-line-of-sight communication. China Commun. 13, 63-75(2016).

【4】D. B. Li, K. Jiang, X. J. Sun and C. L. Guo. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photon. 10, 43-110(2018).

【5】X. H. Chen, F. F. Ren, S. L. Gu and J. D. Ye. Review of gallium-oxide-based solar-blind ultraviolet photodetector. Photon. Res. 7, 381-415(2019).

【6】N. Biyikli, O. Aytur, I. Kimukin, T. Tut and E. Ozbay. Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity. Appl. Phys. Lett. 81, 3272-3274(2002).

【7】R. A. Yotter and D. M. Wilson. A review of photodetectors for sensing light-emitting reporters in biological systems. IEEE Sens. J. 3, 288-303(2003).

【8】H. Ding, G. Chen, Z. Xu and B. M. Sadler. Channel modelling and performance of non-line-of-sight ultraviolet scattering communications. IET Commun. 6, 514-524(2012).

【9】J. Y. Zheng, L. Wang, X. Z. Wu, Z. B. Hao, C. G. Sun, B. Xiong, Y. Luo, Y. J. Han, J. Wang, H. T. Li, J. Brault, S. Matta, M. A. Khalfioui, J. C. Yan, T. Wei, Y. Zhang and J. X. Wang. A PMT-like high gain avalanche photodiode based on GaN/AlN periodically stacked structure. Appl. Phys. Lett. 109, (2016).

【10】Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong and C. X. Shan. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J. Mater. Chem. C. 6, 5727-5732(2018).

【11】B. W. Lim, Q. C. Chen, J. Y. Yang and M. A. Khan. High responsivity intrinsic photoconductors based on AlxGa1-xN. Appl. Phys. Lett. 68, 3761-3762(1996).

【12】E. Monroy, F. Calle, E. Mu?oz and F. Omnès. AlGaN metal-semiconductor-metal photodiodes. Appl. Phys. Lett. 74, 3401-3403(1999).

【13】T. Tut, S. Butun, B. Butun, M. Gokkavas, H. B. Yu and E. Ozbay. Solar-blind AlxGa1-xN-based avalanche photodiodes. Appl. Phys. Lett. 87, (2005).

【14】Z. Q. Huang, J. F. Li, W. L. Zhang and H. Jiang. AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl. Phys. Express. 6, (2013).

【15】Z. G. Shao, X. F. Yang, H. F. You, D. J. Chen, H. Lu, R. Zhang, Y. D. Zheng and K. X. Dong. Ionization-enhanced AlGaN heterostructure avalanche photodiodes. IEEE Electron Device Lett. 38, 485-488(2017).

【16】E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema and M. Razeghi. AlxGa1-xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%. Appl. Phys. Lett. 103, (2013).

【17】M. Brendel, M. Helbling, A. Knigge, F. Brunner and M. Weyers. Solar-blind AlGaN MSM photodetectors with 24% external quantum efficiency at 0 V. Electron. Lett. 51, 1598-1600(2015).

【18】G. H. Bao, D. B. Li, X. J. Sun, M. M. Jiang, Z. M. Li, H. Song, H. Jiang, Y. R. Chen, G. Q. Miao and Z. W. Zhang. Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles. Opt. Express. 22, 24286-24293(2014).

【19】D. B. Li, X. J. Sun, Y. P. Jia, M. I. Stockman, H. P. Paudel, H. Song, H. Jiang and Z. M. Li. Direct observation of localized surface plasmon field enhancement by Kelvin probe force microscopy. Light Sci. Appl. 6, (2017).

【20】T. M. Kuan, S. J. Chang, Y. K. Su, C. H. Ko, J. B. Webb, J. A. Bardwell, Y. Liu, H. P. Tang, W. J. Lin, Y. T. Cherng and W. H. Lan. High optical-gain AlGaN/GaN 2 dimensional electron gas photodetectors. Jpn. J. Appl. Phys. 42, 5563-5564(2003).

【21】A. Yoshikawa, Y. Yamamoto, T. Murase, M. Iwaya, T. Takeuchi, S. Kamiyama and I. Akasaki. High-photosensitivity AlGaN-based UV heterostructure-field-effect-transistor-type photosensors. Jpn. J. Appl. Phys. 55, (2016).

【22】S. Rathkanthiwar, A. Kalra, S. V. Solanke, N. Mohta, R. Muralidharan, S. Raghavan and D. N. Nath. Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors. J. Appl. Phys. 121, (2017).

【23】A. Yoshikawa, S. Ushida, K. Nagase, M. Iwaya, T. Takeuchi, S. Kamiyama and I. Akasaki. High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Appl. Phys. Lett. 111, (2017).

【24】J. Simon, V. Protasenko, C. X. Lian, H. L. Xing and D. Jena. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science. 327, 60-64(2010).

【25】R. Chaudhuri, S. J. Bader, Z. Chen, D. A. Muller, H. L. G. Xing and D. Jena. A polarization-induced 2D hole gas in undoped gallium nitride quantum wells. Science. 365, 1454-1457(2019).

【26】M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek and Y. Park. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, (2007).

【27】T. Hashimoto, F. Wu, J. S. Speck and S. Nakamura. A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nat. Mater. 6, 568-571(2007).

【28】O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 87, 334-344(2000).

【29】M. Brendel, M. Helbling, A. Knigge, F. Brunner and M. Weyers. Measurement and simulation of top- and bottom-illuminated solar-blind AlGaN metal-semiconductor-metal photodetectors with high external quantum efficiencies. J. Appl. Phys. 118, (2015).

【30】J. Schlegel, M. Brendel, M. Martens, A. Knigge, J. Rass, S. Einfeldt, F. Brunner, M. Weyers and M. Kneissl. Influence of carrier lifetime, transit time, and operation voltages on the photoresponse of visible-blind AlGaN metal-semiconductor-metal photodetectors. Jpn. J. Appl. Phys. 52, (2013).

【31】O. Katz, A. Horn, G. Bahir and J. Salzman. Electron mobility in an AlGaN/GaN two-dimensional electron gas. I. Carrier concentration dependent mobility. IEEE Trans. Electron Devices. 50, 2002-2008(2003).

【32】Z.-H. Zhang, L. P. Li, Y. H. Zhang, F. J. Xu, Q. Shi, B. Shen and W. G. Bi. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes. Opt. Express. 25, 16550-16559(2017).

【33】M. Brendel, M. Helbling, A. Knauer, S. Einfeldt, A. Knigge and M. Weyers. Top- and bottom-illumination of solar-blind AlGaN metal-semiconductor-metal photodetectors. Phys. Status Solidi A. 212, 1021-1028(2015).

【34】J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. H. Yu, R. M. Kolbas, J. W. Cook and J. F. Schetzina. Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys. Mater. Res. Soc. Internet J. Nitride Semicond. Res. 4, 502-507(1999).

【35】C. M. Jeon and J. Lee. Enhancement of Schottky barrier height on AlGaN/GaN heterostructure by oxidation annealing. Appl. Phys. Lett. 82, 4301-4303(2003).

【36】T. Hashizume and H. Hasegawa. Effects of nitrogen deficiency on electronic properties of AlGaN surfaces subjected to thermal and plasma processes. Appl. Surf. Sci. 234, 387-394(2004).

【37】B. Sarkar, B. B. Haidet, P. Reddy, R. Kirste, R. Collazo and Z. Sitar. Performance improvement of ohmic contacts on Al-rich n-AlGaN grown on single crystal AlN substrate using reactive ion etching surface treatment. Appl. Phys. Express. 10, (2017).

【38】M. Garg, T. R. Naik, C. S. Pathak, S. Nagarajan, V. R. Rao and R. Singh. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified gallium nitride surfaces. Appl. Phys. Lett. 112, (2018).

【39】T. Detchprohm, K. Hiramatsu, K. Itoh and I. Akasaki. Relaxation process of the thermal strain in the GaN/α-Al2O3 heterostructure and determination of the intrinsic lattice constants of GaN free from the strain. Jpn. J. Appl. Phys. 31, L1454-L1456(1992).

【40】A. F. WrightA. F. Wright. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J. Appl. Phys. 82, 2833-2839(1997).

【41】W. Y. Han, Z. W. Zhang, Z. M. Li, Y. R. Chen, H. Song, G. Q. Miao, F. Fan, H. F. Chen, Z. Liu and H. Jiang. High performance back-illuminated MIS structure AlGaN solar-blind ultraviolet photodiodes. J. Mater. Sci. Mater. Electron. 29, 9077-9082(2018).

【42】K. Jiang, X. J. Sun, J. W. Ben, Y. P. Jia, H. N. Liu, Y. Wang, Y. Wu, C. H. Kai and D. B. Li. The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. CrystEngComm. 20, 2720-2728(2018).

【43】K. Jiang, X. J. Sun, J. W. Ben, Z. M. Shi, Y. P. Jia, Y. Wu, C. H. Kai, Y. Wang and D. B. Li. Suppressing the compositional non-uniformity of AlGaN grown on a HVPE-AlN template with large macro-steps. CrystEngComm. 21, 4864-4873(2019).

【44】G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti and F. H. L. Koppens. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363-368(2012).

【45】N. Guo, L. Xiao, F. Gong, M. Luo, F. Wang, Y. Jia, H. C. Chang, J. K. Liu, Q. Li, Y. Wu, Y. Wang, C. X. Shan, Y. Xu, P. Zhou and W. D. Hu. Light-driven WSe2-ZnO junction field-effect transistors for high-performance photodetection. Adv. Sci. 7, (2019).

【46】J. G. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chou and C. Y. Chang. Schottky contact and the thermal stability of Ni on n-type GaN. J. Appl. Phys. 80, 1623-1627(1996).

【47】S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno and T. Jimbo. Effects of annealing on Ti, Pd, and Ni/n-Al0.11Ga0.89N Schottky diodes. IEEE Trans. Electron Devices. 48, 573-580(2001).

【48】E. Monroy, F. Calle, R. Ranchal, T. Palacios, M. Verdu, F. J. Sanchez, M. T. Montojo, M. Eickhoff, F. Omnes, Z. Bougrioua and I. Moerman. Thermal stability of Pt- and Ni-based Schottky contacts on GaN and Al0.31Ga0.69N. Semicond. Sci. Technol. 17, L47-L54(2002).

【49】N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa and T. Jimbo. Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal. Solid-State Electron. 48, 689-695(2004).

引用该论文

Ke Jiang, Xiaojuan Sun, Zi-Hui Zhang, Jianwei Ben, Jiamang Che, Zhiming Shi, Yuping Jia, Yang Chen, Shanli Zhang, Wei Lv, and Dabing Li, "Polarization-enhanced AlGaN solar-blind ultraviolet detectors," Photonics Research 8(7), 1243-1252 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF