Photonics Research, 2020, 8 (10): 10001551, Published Online: Sep. 11, 2020  

Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon Download: 733次

Author Affiliations
1 Department of Electrical & Computer Engineering, University of California, Santa Barbara, California 93106, USA
2 Nexus Photonics, Goleta, California 93117, USA
3 Hewlett Packard Labs, Palo Alto, California 94304, USA
Abstract
Heterogeneously integrated lasers in the O-band are a key component in realizing low-power optical interconnects for data centers and high-performance computing. Quantum-dot-based materials have been particularly appealing for light generation due to their ultralow lasing thresholds, small linewidth enhancement factor, and low sensitivity to reflections. Here, we present widely tunable quantum-dot lasers heterogeneously integrated on silicon-on-insulator substrate. The tuning mechanism is based on Vernier dual-ring geometry, and a 47 nm tuning range with 52 dB side-mode suppression ratio is observed. These parameters show an increase to 52 nm and 58 dB, respectively, when an additional wavelength filter in the form of a Mach–Zehnder interferometer is added to the cavity. The Lorentzian linewidth of the lasers is measured as low as 5.3 kHz.

Aditya Malik, Joel Guo, Minh A. Tran, Geza Kurczveil, Di Liang, John E. Bowers. Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon[J]. Photonics Research, 2020, 8(10): 10001551.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!