首页 > 论文 > 激光与光电子学进展 > 57卷 > 18期(pp:180001--1)

点扫描移频超分辨显微成像进展 (封面文章) (特邀综述)

Progress of Point Scanning Super-Resolution Microscopy Based on Frequency Shifting (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于光学衍射极限的存在,一直以来常规光学显微镜的分辨率被限制在照明光波长的一半左右,这严重限制了生物、材料等研究领域对于更细微结构的观察。共聚焦显微成像技术作为最典型也是最早的点扫描显微技术,凭借其良好的光切片能力和高信噪比成为如今应用最为广泛的光学显微技术。然而由于共聚焦显微成像技术的截止频率有限,分辨率的提升也受到限制。移频技术是将更高频的信息移动到可观察的频率范围,从而提高点扫描显微技术的分辨率。详细介绍了点扫描移频超分辨成像技术的基本原理、优缺点,并对其进行了展望。

Abstract

The resolution of conventional optical microscopes is limited to about half of the wavelength of illumination light due to the optical diffraction limit, which severely limits the observation of finer structures in biological and material research fields. As the most typical and earliest point scanning microscopy, the confocal microscopy has become the most widely used optical microscopy with good optical slicing ability and high signal-to-noise ratio. However, due to the limited cut-off frequency of the confocal microscopy, the improvement of resolution is also limited. Frequency shifting technique aims to move the higher frequency information to the observable frequency range, so as to improve the resolution of point scanning microscopy. In this review, the basic principle, advantages, and disadvantages of point scanning frequency shifting super-resolution imaging technology are introduced in detail, and its prospect is also given.

广告组2 - 920飞秒 +合束激光器
补充资料

中图分类号:O433

DOI:10.3788/LOP57.180001

所属栏目:综述

基金项目:浙江省之江实验室项目、国家重大科研仪器研制项目;

收稿日期:2020-04-27

修改稿日期:2020-06-04

网络出版日期:2020-09-01

作者单位    点击查看

陈宇宸:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
李传康:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
郝翔:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
匡翠方:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027山西大学极限光学协同创新中心, 山西 太原 030006浙江大学宁波技术研究所, 浙江 宁波 315100
刘旭:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027山西大学极限光学协同创新中心, 山西 太原 030006

联系人作者:匡翠方(cfkuang@zju.edu.cn)

备注:浙江省之江实验室项目、国家重大科研仪器研制项目;

【1】Abbe E. Beitr?ge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv Für Mikroskopische Anatomie[J]. 1873, 9(1): 413-468.

【2】Dublin Philosophical Magazine, Journal of Science. Lord Rayleigh F R S. XII. On the manufacture, theory of diffraction-gratings. The London, Edinburgh[J]. 1874, 47(310): 81-93.

【3】Minsky M. Memoir on inventing the confocal scanning microscope [J]. Scanning. 1988, 10(4): 128-138.

【4】Tearney G J, Webb R H, Bouma B E. Spectrally encoded confocal microscopy [J]. Optics Letters. 1998, 23(15): 1152-1154.

【5】Matthew White W, Rajadhyaksha M, Gonzalez S, et al. Noninvasive imaging of human oral mucosa in vivo by confocal reflectance microscopy [J]. Laryngoscope. 1999, 109(10): 1709-1717.

【6】Busam K J, Charles C, Lee G, et al. Morphologic features of melanocytes, pigmented keratinocytes, and melanophages by in vivo confocal scanning laser microscopy [J]. Modern Pathology. 2001, 14(9): 862-868.

【7】Fitzgerald A J, Berry E, Zinovev N N, et al. An introduction to medical imaging with coherent terahertz frequency radiation [J]. Physics in Medicine and Biology. 2002, 47(7): R67-R84.

【8】Smolyaninov I I, Davis C C, Zayats A V. Image formation in surface plasmon polariton mirrors: applications in high-resolution optical microscopy [J]. New Journal of Physics. 2005, 7(1): 175.

【9】Zhang Y H, Poonja S, Roorda A. MEMS-based adaptive optics scanning laser ophthalmoscopy [J]. Optics Letters. 2006, 31(9): 1268-1270.

【10】Stender A S, Marchuk K, Liu C, et al. Single cell optical imaging and spectroscopy [J]. Chemical Reviews. 2013, 113(4): 2469-2527.

【11】Brakenhoff G J, Blom P, Barends P J. Confocal scanning light microscopy with high aperture immersion lenses [J]. Journal of Microscopy. 1979, 117(2): 219-232.

【12】Borlinghaus R T. 13(3): i-iii [J]. Kappel C. HyVolution: the smart path to confocal super-resolution. Nature Methods. 2016.

【13】Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters. 1994, 19(11): 780-782.

【14】Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy. 2000, 198(2): 82-87.

【15】Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination [J]. Biophysical Journal. 2008, 94(12): 4957-4970.

【16】Mudry E, Belkebir K, Girard J C, et al. Structured illumination microscopy using unknown speckle patterns [J]. Nature Photonics. 2012, 6(5): 312-315.

【17】Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science. 2006, 313(5793): 1642-1645.

【18】Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods. 2006, 3(10): 793-796.

【19】Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J]. Biophysical Journal. 2006, 91(11): 4258-4272.

【20】Sheppard C J R. Super-resolution in confocal imaging [J]. Optik. 1988, 80(2): 53-54.

【21】Müller C B, Enderlein J. Image scanning microscopy [J]. Physical Review Letters. 2010, 104(19): 198101.

【22】super-resolution[J]. Nature Methods. 12(12): i-ii . Huff J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio. 2015.

【23】Roth S, Sheppard C, Wicker K, et al. Optical photon reassignment microscopy (OPRA) [J]. Optical Nanoscopy. 2013, 2(1): 5.

【24】Ge B L, Wang Y F, Huang Y J, et al. Three-dimensional resolution and contrast-enhanced confocal microscopy with array detection [J]. Optics Letters. 2016, 41(9): 2013-2016.

【25】Sheppard C J R, Mehta S B, Heintzmann R. Superresolution by image scanning microscopy using pixel reassignment [J]. Optics Letters. 2013, 38(15): 2889-2892.

【26】Ge B L, Huang Y J, Fang Y, et al. Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection [J]. Journal of Modern Optics. 2017, 64(16): 1597-1603.

【27】Yu Z Z, Liu S C, Sun S Y, et al. Imaging resolution and properties analysis of super resolution microscopy with parallel detection under different noise, detector and image restoration conditions [J]. Journal of Modern Optics. 2018, 65(10): 1188-1198.

【28】Zhu D Z, Fang Y, Chen Y H, et al. Comparison of multi-mode parallel detection microscopy methods [J]. Optics Communications. 2017, 387: 275-280.

【29】Breedijk R M P, Brandt R A J, et al. Re-scan confocal microscopy: scanning twice for better resolution [J]. Biomedical Optics Express. 2013, 4(11): 2644-2656.

【30】Breedijk R M P, Hoebe R A, et al. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity [J]. Methods and Applications in Fluorescence. 2017, 5(1): 015002.

【31】Azuma T, Kei T. Super-resolution spinning-disk confocal microscopy using optical photon reassignment [J]. Optics Express. 2015, 23(11): 15003-15011.

【32】York A, Parekh S H, Nogare D D, et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy [J]. Nature Methods. 2012, 9(7): 749-754.

【33】Schulz O, Pieper C, Clever M, et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy [J]. Proceedings of the National Academy of Sciences of the United States of America. 2013, 110(52): 21000-21005.

【34】Wu J J, Li S W, Cao H Q, et al. Resolution improvement of multifocal structured illumination microscopy with sparse Bayesian learning algorithm [J]. Optics Express. 2018, 26(24): 31430-31438.

【35】13 (11): i-ii [J]. Huff J. The fast mode for ZEISS LSM 880 with Airyscan: high-speed confocal imaging with super-resolution, improved signal-to-noise ratio. Nature Methods. 2016.

【36】Chen Y H, Zhu D Z, Fang Y, et al. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy [J]. Optics Communications. 2017, 404: 184-188.

【37】Li Y C, Liu S C, Liu D H, et al. Image scanning fluorescence emission difference microscopy based on a detector array [J]. Journal of Microscopy. 2017, 266(3): 288-297.

【38】Roider C, Ritsch-Marte M, Jesacher A. High-resolution confocal Raman microscopy using pixel reassignment [J]. Optics Letters. 2016, 41(16): 3825-3828.

【39】Wang W S, Zhang Z M, Liu S C, et al. Stimulated emission depletion microscopy with array detection and photon reassignment [J]. Optics and Lasers in Engineering. 2020, 129: 106061.

【40】Zhi Y N, Wang B Q, Yao X C. Super-resolution scanning laser microscopy based on virtually structured detection [J]. Critical Reviews in Biomedical Engineering. 2015, 43(4): 297-322.

【41】Sun S Y, Liu S C, Wang W S, et al. Improving the resolution of two-photon microscopy using pixel reassignment [J]. Applied Optics. 2018, 57(21): 6181-6187.

【42】Tzang O, Feldkhun D, Agrawal A, et al. Two-photon PSF-engineered image scanning microscopy [J]. Optics Letters. 2019, 44(4): 895-898.

【43】Liu S C, Zhang Z M, Zheng J Y, et al. Parallelized fluorescence lifetime imaging microscopy (FLIM) based on photon reassignment [J]. Optics Communications. 2018, 421: 83-89.

【44】Tenne R, Rossman U, Rephael B, et al. Super-resolution enhancement by quantum image scanning microscopy [J]. Nature Photonics. 2019, 13(2): 116-122.

【45】Lu J, Min W, Conchello J A, et al. Super-resolution laser scanning microscopy through spatiotemporal modulation [J]. Nano Letters. 2009, 9(11): 3883-3889.

【46】Lu R W, Wang B Q, Zhang Q X, et al. Super-resolution scanning laser microscopy through virtually structured detection [J]. Biomedical Optics Express. 2013, 4(9): 1673-1682.

【47】Shroff S A, Fienup J R, Williams D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution [J]. Journal of the Optical Society of America A-Optics Image Science and Vision. 2009, 26(2): 413-424.

【48】Zhi Y N, Lu R W, Wang B Q, et al. Rapid super-resolution line-scanning microscopy through virtually structured detection [J]. Optics Letters. 2015, 40(8): 1683-1686.

【49】Kuang C F, Ma Y, Zhou R J, et al. Virtual k-space modulation optical microscopy [J]. Physical Review Letters. 2016, 117(2): 028102.

【50】Cao R Z, Kuang C F, Yong L, et al. Superresolution via saturated virtual modulation microscopy [J]. Optics Express. 2017, 25(26): 32364-32379.

【51】Huang Y J, Zhu D Z, Jin L H, et al. Laser scanning saturated structured illumination microscopy based on phase modulation [J]. Optics Communications. 2017, 396: 261-266.

【52】Zhao G Y, Zheng C, Kuang C F, et al. Nonlinear focal modulation microscopy [J]. Physical Review Letters. 2018, 120(19): 193901.

【53】Yamanaka M, Tzeng Y, Kawano S, et al. SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging [J]. Biomedical Optics Express. 2011, 2(7): 1946-1954.

【54】Eggeling C, Volkmer A. Seidel C A M. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy [J]. ChemPhysChem. 2005, 6(5): 791-804.

【55】Laporte G P J, Stasio N, Sheppard C J R, et al. Resolution enhancement in nonlinear scanning microscopy through post-detection digital computation [J]. Optica. 2014, 1(6): 455-460.

【56】Krzic U. Multiple-view microscopy with light-sheet based fluorescence microscope [2020-04-27].https://www.researchgate.net/publication/33429476_Multiple-View_Microscopy_with_Light-Sheet_Based_Fluorescence_Microscope.[2020-04-27]. 0.

【57】Preibisch S, Amat F, Stamataki E, et al. -02-02)[2020-04-27] . 2014, org/abs/1308: 0730.Preibisch S, Amat F, Stamataki E, et al. -02-02)[2020-04-27] . 2014, org/abs/1308: 0730.

【58】Heintzmann R. Estimating missing information by maximum likelihood deconvolution [J]. Micron. 2007, 38(2): 136-144.

【59】Chen Y C, Zhang C F, Kuang C F. Nonlinear focal modulation microscopy based on interleaved reconstruction [J]. Proceedings of SPIE. 2019, 1118: 1118611.

【60】Dertinger T, Colyer R, Iyer G, et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) [J]. Proceedings of the National Academy of Sciences of the United States of America. 2009, 106(52): 22287-22292.

【61】Zhao G Y, Kabir M M, Toussaint K C, et al. Saturated absorption competition microscopy [J]. Optica. 2017, 4(6): 633-636.

【62】Fu Y, Wang T L, Zhao S. Imaging principles and applications of super-resolution optical microscopy [J]. Laser & Optoelectronics Progress. 2019, 56(24): 240002.
付芸, 王天乐, 赵森. 超分辨光学显微的成像原理及应用进展 [J]. 激光与光电子学进展. 2019, 56(24): 240002.

【63】Hu C G, Zha R D, Ling Q Y, et al. Super-resolution microscopy applications and development in living cell [J]. Infrared and Laser Engineering. 2017, 46(11): 15-25.
胡春光, 查日东, 凌秋雨, 等. 超分辨显微技术在活细胞中的应用与发展 [J]. 红外与激光工程. 2017, 46(11): 15-25.

【64】Lin D Y, Qu J L. Recent progress on super-resolution imaging and correlative super-resolution microscopy [J]. Acta Physica Sinica. 2017, 66(14): 246-268.
林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展 [J]. 物理学报. 2017, 66(14): 246-268.

引用该论文

Chen Yuchen,Li Chuankang,Hao Xiang,Kuang Cuifang,Liu Xu. Progress of Point Scanning Super-Resolution Microscopy Based on Frequency Shifting[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180001

陈宇宸,李传康,郝翔,匡翠方,刘旭. 点扫描移频超分辨显微成像进展[J]. 激光与光电子学进展, 2020, 57(18): 180001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF