首页 > 论文 > Photonics Research > 7卷 > 10期(pp:1154-1160)

Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Transition radiation (TR) induced by electron–matter interaction usually demands vast accelerating voltages, and the radiation angle cannot be controlled. Here we present a mechanism of direction controllable inverse transition radiation (DCITR) in a graphene-dielectric stack excited by low-velocity electrons. The revealed mechanism shows that the induced hyperbolic-like spatial dispersion and the superposition of the individual bulk graphene plasmons (GPs) modes make the fields, which are supposed to be confined on the surface, radiate in the stack along a special radiation angle normal to the Poynting vector. By adjusting the chemical potential of the graphene sheets, the radiation angle can be controlled. And owing to the excitation of bulk GPs, only hundreds of volts for the accelerating voltage are required and the field intensity is dramatically enhanced compared with that of the normal TR. Furthermore, the presented mechanism can also be applied to the hyperbolic stack based on semiconductors in the infrared region as well as noble metals in the visible and ultraviolet region. Accordingly, the presented mechanism of DCITR is of great significance in particle detection, radiation emission, and so on.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/PRJ.7.001154

所属栏目:Optical and Photonic Materials

基金项目:National Key Research and Development Program of China; National Natural Science Foundation of China (NSFC)10.13039/501100001809;

收稿日期:2019-07-04

录用日期:2019-08-03

网络出版日期:2019-09-18

作者单位    点击查看

Sen Gong:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
Min Hu:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
Zhenhua Wu:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, Chinae-mail: wuzhenhua@uestc.edu.cn
Hang Pan:Glasgow College, University of Electronic Science and Technology of China, Chengdu 610054, China
Haotian Wang:Glasgow College, University of Electronic Science and Technology of China, Chengdu 610054, China
Kaichun Zhang:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
Renbin Zhong:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
Jun Zhou:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
Tao Zhao:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
Diwei Liu:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
Wei Wang:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
Chao Zhang:Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, ChinaSchool of Physics and Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
Shenggang Liu:Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, ChinaKey Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China

联系人作者:Min Hu(hu_m@uestc.edu.cn)

备注:National Key Research and Development Program of China; National Natural Science Foundation of China (NSFC)10.13039/501100001809;

【1】F. G. Bass and V. M. Yakovenko. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Sov. Phys. Usp. 8, (1965).

【2】V. L. GinzburgV. L. Ginzburg. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Scripta. T2A, 182-191(1982).

【3】I. Frank and I. Tamm. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. C.R. Acad. Sci. USSR. 14, 109-114(1937).

【4】P. A. CherenkovP. A. Cherenkov. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Doklady Akademii Nauk SSSR. 2, (1934).

【5】W. Galbraith and J. V. Jelley. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Nature. 171, 349-350(1953).

【6】C. J. Hirschmugl, M. Sagurton and G. P. Williams. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. A. 44, 1316-1320(1991).

【7】G. L. OrlandiG. L. Orlandi. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Opt. Commun. 211, 109-119(2002).

【8】A. Yurtsever, M. Couillard and D. A. Muller. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. Lett. 100, (2008).

【9】C. Kremers, D. N. Chigrin and J. Kroha. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. A. 79, (2009).

【10】O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismail, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V. Malka and J. Faure. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Nat. Phys. 7, 219-222(2011).

【11】O. Lundh, C. Rechatin, J. Lim, V. Malka and J. Faure. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. Lett. 110, (2013).

【12】T. J. Maxwell, C. Behrens, Y. Ding, A. S. Fisher, J. Frisch, Z. Huang and H. Loos. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. Lett. 111, (2013).

【13】M. V. Tsarev and P. Baum. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. New J. Phys. 20, (2018).

【14】I. Kaminer, M. Mutzafi, A. Levy, G. Harari, H. H. Sheinfux, S. Skirlo, J. Nemirovsky, J. D. Joannopoulos, M. Segev and M. Solja i . Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. X. 6, (2016).

【15】I. Adam, R. Aleksan, L. Amerman, E. Antokhin, D. Aston, P. Bailly, C. Beigbeder, M. Benkebil, P. Besson, G. Bonneaud and M. Zito. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Nucl. Instrum. Methods Phys. Res. A. 538, 281-357(2005).

【16】I. GeorgescuI. Georgescu. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Nat. Phys. 8, (2012).

【17】A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams and J. B. Rosenzweig. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. Lett. 103, (2009).

【18】G. Adamo, K. F. MacDonald, Y. H. Fu, C.-M. Wang, D. P. Tsai, F. J. García de Abajo and N. I. Zheludev. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. Lett. 103, (2009).

【19】S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang and M. Hu. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. Lett. 109, (2012).

【20】S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao and R. Zhong. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Appl. Phys. Lett. 104, (2014).

【21】N. Yamamoto, A. Toda and K. Axaya. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Microscopy. 45, 64-72(1996).

【22】N. Yamamoto, H. Sugiyama and A. Toda. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Proc. R. Soc. London. 452, 2279-2301(1996).

【23】S. Lazar, G. A. Botton and H. W. Zandbergen. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Ultramicroscopy. 106, 1091-1103(2006).

【24】F. J. G. De AbajoF. J. G. De Abajo. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Rev. Mod. Phys. 82, 209-275(2010).

【25】Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu and N. B. Ming. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. Lett. 100, (2008).

【26】F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang and Y. Huang. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Nat. Photonics. 11, 289-292(2017).

【27】X. Lin, S. Easo, Y. Shen, H. Chen, B. Zhang, J. D. Joannopoulos, M. Solja i and I. Kaminer. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Nat. Phys. 14, 816-821(2018).

【28】C. Luo, M. Ibanescu, E. J. Reed, S. G. Johnson and J. D. Joannopoulos. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. Lett. 96, (2006).

【29】J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu and S. Zhuang. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Nat. Photonics. 5, 239-245(2011).

【30】T. Xu and H. J. Lezec. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Nat. Commun. 5, (2014).

【31】A. A. Orlova, S. V. Zhukovsky, I. V. Iorsh and P. A. Belov. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Photon. Nanostr. Fundam. Appl. 12, 213-230(2014).

【32】J. S. Gomez-Diaz, M. Tymchenko and A. Alù. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rev. Lett. 114, (2015).

【33】L. Tengfei and J. B. Khurgin. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Optica. 3, 1388-1396(2016).

【34】J. S. T. Smalley, F. Vallini, X. Zhang and Y. Fainman. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Adv. Opt. Photon. 10, 354-408(2018).

【35】L. Ferrari, C. Wu, D. Lepage, X. Zhang and Z. Liu. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Prog. Quantum Electron. 40, 1-40(2015).

【36】I. Iorsh, A. Poddubny, A. Orlov, P. Belov and Y. S. Kivshar. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Lett. A. 376, 185-187(2012).

【37】T. Galfsky, H. N. S. Krishnamoorthy, W. Newman, E. E. Narimanov, Z. Jacob and V. M. Menon. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Optica. 2, 62-65(2015).

【38】Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh and D. Y. Tang. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Adv. Funct. Mater. 19, 3077-3083(2009).

【39】H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout and P. Kockaert. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Opt. Lett. 37, 1856-1858(2012).

【40】Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang and K. P. Loh. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Nat. Photonics. 5, 411-415(2011).

【41】Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang and P. N. Prasad. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Phys. Rep. 795, 1-51(2019).

【42】J. Yao, Y. Chen, L. Ye, N. Liu, G. Cai and Q. H. Liu. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Photon. Res. 5, 377-384(2017).

【43】S. Das, A. Salandrino and R. Hui. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. J. Opt. Soc. Am. B. 35, 2616-2624(2018).

【44】T. OchiaiT. Ochiai. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. J. Phys. Soc. Jpn. 83, (2014).

【45】F. J. G. De AbajoF. J. G. De Abajo. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. ACS Nano. 7, 11409-11419(2013).

【46】K.-C. Zhang, X.-X. Chen, C.-J. Sheng, K. J. A. Ooi, L. K. Ang and X.-S. Yuan. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Opt. Express. 25, 20477-20485(2017).

【47】K. Akbari, Z. L. Mi kovi , S. Segui, J. L. Gervasoni and N. R. Arista. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. ACS Photon. 4, 1980-1992(2017).

【48】S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao and S. Liu. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Opt. Express. 22, 19252-19261(2014).

引用该论文

Sen Gong, Min Hu, Zhenhua Wu, Hang Pan, Haotian Wang, Kaichun Zhang, Renbin Zhong, Jun Zhou, Tao Zhao, Diwei Liu, Wei Wang, Chao Zhang, and Shenggang Liu, "Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack," Photonics Research 7(10), 1154-1160 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF