首页 > 论文 > 中国激光 > 47卷 > 1期(pp:110002--1)

基于三维激光雷达的无人船障碍物自适应栅格表达方法

Adaptive Grid Representation Method for Unmanned Surface Vehicle Obstacle Based on Three-Dimensional Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对无人船(USV)海上近距离实时性避碰检测的需求,提出一种基于三维激光雷达的USV障碍物自适应栅格表达方法。根据USV周边环境障碍物的激光雷达点云分布,建立障碍物密集度和障碍物表达时间与栅格地图分辨率之间的函数关系,自适应确定适中的地图分辨率,构建栅格地图;对三维激光雷达点云数据进行降维处理,将三维激光雷达点云投影到栅格地图,减小数据量,提高障碍物检测效率。利用三维激光雷达开展方法验证性实验,获取了三种不同障碍物场景的激光雷达点云数据。处理结果显示:环境中障碍物数量越多,获得的期望栅格地图分辨率越高,障碍物表达更精细;反之,障碍物数量越少,获得的期望栅格地图分辨率越低,障碍物表达更快速,可实现障碍物自适应栅格表达。所建立的方法可为后续USV局部避碰路径规划研究提供支撑。

Abstract

To meet the demand for the real-time collision-avoidance detection of close obstacles by an unmanned surface vehicle (USV) on the sea surface, this study establishes an obstacle adaptive grid representation method for the USV based on three-dimensional (3D) lidar. According to the distribution of the lidar point cloud of environmental obstacles around the USV, a functional relationship among obstacle density, obstacle expression time, and grid map resolution is established for adaptively determining the moderate map resolution and constructing a grid map. The 3D lidar point cloud data are subjected to the process of dimensionality reduction and projected onto the grid map to reduce the amount of data and improve obstacle detection efficiency. Furthermore, a method validation experiment is conducted using 3D lidar; consequently, the lidar point cloud data of three different obstacle scenarios are obtained. The results show that the desired resolution of the obtained grid map and number of details regarding the obstacle increase with an increasing number of obstacles. Conversely, the desired resolution of the obtained grid map is lower and obstacle representation is faster with fewer obstacles in the environment, and the obstacle adaptive grid representation can be realized. The follow-up research of USV local collision avoidance path-planning can be supported by the established obstacle adaptive grid representation method.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249

DOI:10.3788/CJL202047.0110002

所属栏目:遥感与传感器

基金项目:国家重点研发计划、国家自然科学基金;

收稿日期:2019-07-22

修改稿日期:2019-09-26

网络出版日期:2020-01-01

作者单位    点击查看

刘德庆:自然资源部第一海洋研究所, 山东 青岛 266061
张杰:自然资源部第一海洋研究所, 山东 青岛 266061
金久才:自然资源部第一海洋研究所, 山东 青岛 266061

联系人作者:刘德庆(liudeqing@fio.org.cn); 金久才(liudeqing@fio.org.cn);

备注:国家重点研发计划、国家自然科学基金;

【1】Liu Z X, Zhang Y M, Yu X, et al. Unmanned surface vehicles: an overview of developments and challenges [J]. Annual Reviews in Control. 2016, 41: 71-93.

【2】Wang B, Su Y M, Wan L, et al. Sea sky line detection method of unmanned surface vehicle based on gradient saliency [J]. Acta Optica Sinica. 2016, 36(5): 0511002.
王博, 苏玉民, 万磊, 等. 基于梯度显著性的水面无人艇的海天线检测方法 [J]. 光学学报. 2016, 36(5): 0511002.

【3】Almeida C, Franco T, Ferreira H, et al. Radar based collision detection developments on USV ROAZ II . [C]∥OCEANS 2009-EUROPE, May 11-14, 2009, Bremen, Germany. New York: IEEE. 2009, 10915094.

【4】Zhuang J Y, Zhang L, Zhao S Q, et al. Radar-based collision avoidance for unmanned surface vehicles [J]. China Ocean Engineering. 2016, 30(6): 867-883.

【5】Ma Z L, Wen J, Liang X M. Video image clarity algorithm research of USV visual system under the sea fog [M]. ∥Tan Y, Shi Y, Mo H. Advances in swarm intelligence. Lecture notes in computer science. Berlin, Heidelberg: Springer. 2013, 7929: 436-444.

【6】Mou X Z, Wang H. Image-based maritime obstacle detection using global sparsity potentials [J]. Journal of Information and Communication Convergence Engineering. 2016, 14(2): 129-135.

【7】Polvara R, Sharma S, Wan J, et al. Obstacle avoidance approaches for autonomous navigation of unmanned surface vehicles [J]. Journal of Navigation. 2018, 71(1): 241-256.

【8】Halterman R, Bruch M. Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection [J]. Proceedings of SPIE. 2010, 7692: 76920D.

【9】Lee S J, Moon Y S, Ko N Y, et al. A method for object detection using point cloud measurement in the sea environment . [C]∥2017 IEEE Underwater Technology (UT), February 21-24, 2017, Busan, Korea. New York: IEEE. 2017, 16790560.

【10】Esposito J M, Graves M. An algorithm to identify docking locations for autonomous surface vessels from 3-D LiDAR scans . [C]∥2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), April 14-15, 2014, Woburn, MA, USA. New York: IEEE. 2014, 14501878.

【11】Wu P, Xie S R, Liu H L, et al. Autonomous obstacle avoidance of an unmanned surface vehicle based on cooperative manoeuvring [J]. Industrial Robot: an International Journal. 2017, 44(1): 64-74.

【12】Wang S W, Xie L, Ma F, et al. Research of obstacle recognition method for USV based on laser radar . [C]∥2017 4th International Conference on Transportation Information and Safety (ICTIS), August 8-10, 2017, Banff, AB, Canada. New York: IEEE. 2017, 343-348.

【13】Yang S J, Zhang K S, Shao Y S. DEM interpolation algorithm of data from spiral scanning lidar [J]. Chinese Journal of Lasers. 2018, 45(11): 1110006.
杨书娟, 张珂殊, 邵永社. 螺旋式扫描激光雷达数据的DEM内插算法 [J]. 中国激光. 2018, 45(11): 1110006.

【14】B?rcs A, Nagy B, Benedek C. Fast 3-D urban object detection on streaming point clouds [M]. ∥Agapito L, Bronstein M, Rother C. Computer vision-ECCV 2014 Workshops. Lecture notes in computer science. Cham: Springer. 2015, 8926: 628-639.

【15】Thompson D, Coyle E, Brown J. Efficient LiDAR-based object segmentation and mapping for maritime environments [J]. IEEE Journal of Oceanic Engineering. 2019, 44(2): 352-362.

【16】Li X M, Zhang X, Wang W T, et al. 3D lidar-based marine object detection for USV [J]. Journal of Shanghai University(Natural Science Edition). 2017, 23(1): 27-36.
李小毛, 张鑫, 王文涛, 等. 基于3D激光雷达的无人水面艇海上目标检测 [J]. 上海大学学报(自然科学版). 2017, 23(1): 27-36.

引用该论文

Liu Deqing,Zhang Jie,Jin Jiucai. Adaptive Grid Representation Method for Unmanned Surface Vehicle Obstacle Based on Three-Dimensional Lidar[J]. Chinese Journal of Lasers, 2020, 47(1): 0110002

刘德庆,张杰,金久才. 基于三维激光雷达的无人船障碍物自适应栅格表达方法[J]. 中国激光, 2020, 47(1): 0110002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF