首页 > 论文 > Advanced Photonics > 2卷 > 3期(pp:36003-36003)

Transmission of vector vortex beams in dispersive media

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Scattering phenomena affect light propagation through any kind of medium from free space to biological tissues. Finding appropriate strategies to increase the robustness to scattering is the common requirement in developing both communication protocols and imaging systems. Recently, structured light has attracted attention due to its seeming scattering resistance in terms of transmissivity and spatial behavior. Moreover, correlation between optical polarization and orbital angular momentum (OAM), which characterizes the so-called vector vortex beams (VVBs) states, seems to allow for the preservation of the polarization pattern. We extend the analysis by investigating both the spatial features and the polarization structure of vectorial optical vortexes propagating in scattering media with different concentrations. Among the observed features, we find a sudden swift decrease in contrast ratio for Gaussian, OAM, and VVB modes for concentrations of the adopted scattering media exceeding 0.09%. Our analysis provides a more general and complete study on the propagation of structured light in dispersive and scattering media.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1117/1.AP.2.3.036003

所属栏目:Research Articles

基金项目:European Union’s Horizon 2020;

收稿日期:2020-02-14

修改稿日期:2020-05-07

网络出版日期:2020-05-22

作者单位    点击查看

Ilaria Gianani:Sapienza Università di Roma, Dipartimento di Fisica, Rome, Italy;Università degli Studi Roma Tre, Dipartimento di Scienze, Rome, Italy
Alessia Suprano:Sapienza Università di Roma, Dipartimento di Fisica, Rome, Italy
Taira Giordani:Sapienza Università di Roma, Dipartimento di Fisica, Rome, Italy
Nicolò Spagnolo:Sapienza Università di Roma, Dipartimento di Fisica, Rome, Italy
Fabio Sciarrino:Sapienza Università di Roma, Dipartimento di Fisica, Rome, Italy;Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Roma, Italy
Dimitris Gorpas:Technische Universit?t München, Biological Imaging and Center for Translational Cancer Research, Munich, Germany;Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
Vasilis Ntziachristos:Technische Universit?t München, Biological Imaging and Center for Translational Cancer Research, Munich, Germany;Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
Katja Pinker:Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Molecular and Gender Imaging Service, Vienna, Austria
Netanel Biton:Ben-Gurion University of the Negev, Department of Electrical and Computer Engineering, Beer Sheva, Israel
Judy Kupferman:Ben-Gurion University of the Negev, Department of Electrical and Computer Engineering, Beer Sheva, Israel
Shlomi Arnon:Ben-Gurion University of the Negev, Department of Electrical and Computer Engineering, Beer Sheva, Israel

联系人作者:Fabio Sciarrino(fabio.sciarrino@uniroma1.it)

备注:European Union’s Horizon 2020;

【1】L. MarrucciL. Marrucci et al.Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13, (2011).L. MarrucciL. Marrucci et al.Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13, (2011).

【2】M. ErhardM. Erhard et al.Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, (2018).M. ErhardM. Erhard et al.Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, (2018).

【3】F. CardanoF. Cardano et al.Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun. 7, (2016).F. CardanoF. Cardano et al.Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun. 7, (2016).

【4】F. CardanoF. Cardano et al.Detection of ZAK phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, (2017).F. CardanoF. Cardano et al.Detection of ZAK phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, (2017).

【5】L. InnocentiL. Innocenti et al.Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A. 96, (2017).L. InnocentiL. Innocenti et al.Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A. 96, (2017).

【6】T. GiordaniT. Giordani et al.Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett. 122, (2019).T. GiordaniT. Giordani et al.Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett. 122, (2019).

【7】D. CozzolinoD. Cozzolino et al.Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photonics. 1(4), (2019).D. CozzolinoD. Cozzolino et al.Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photonics. 1(4), (2019).

【8】A. SitA. Sit et al.High-dimensional intracity quantum cryptography with structured photons. Optica. 4, 1006-1010(2017).A. SitA. Sit et al.High-dimensional intracity quantum cryptography with structured photons. Optica. 4, 1006-1010(2017).

【9】G. ValloneG. Vallone et al.Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, (2014).G. ValloneG. Vallone et al.Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, (2014).

【10】D. CozzolinoD. Cozzolino et al.Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys. Rev. Appl. 11, (2019).D. CozzolinoD. Cozzolino et al.Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys. Rev. Appl. 11, (2019).

【11】J. Kupferman and S. Arnon. Decision algorithm for data center vortex beam receiver. J. Opt. 19, (2017).J. Kupferman and S. Arnon. Decision algorithm for data center vortex beam receiver. J. Opt. 19, (2017).

【12】J. Kupferman and S. Arnon. Direct detection receiver for vortex beam. J. Opt. Soc. Am. A. 35, 1543-1548(2018).J. Kupferman and S. Arnon. Direct detection receiver for vortex beam. J. Opt. Soc. Am. A. 35, 1543-1548(2018).

【13】J. Kupferman and S. Arnon. Decoding algorithm for vortex communications receiver. J. Opt. 20, (2017).J. Kupferman and S. Arnon. Decoding algorithm for vortex communications receiver. J. Opt. 20, (2017).

【14】J. Kupferman and S. Arnon. OWC with vortex beams in data center networks. Proc. SPIE. 10437, (2017).J. Kupferman and S. Arnon. OWC with vortex beams in data center networks. Proc. SPIE. 10437, (2017).

【15】L. Shi, A. Rodríguez-Contreras and R. R. Alfano. Gaussian beam in two-photon fluorescence imaging of rat brain microvessel. J. Biomed. Opt. 19(12), (2014).L. Shi, A. Rodríguez-Contreras and R. R. Alfano. Gaussian beam in two-photon fluorescence imaging of rat brain microvessel. J. Biomed. Opt. 19(12), (2014).

【16】L. ShiL. Shi et al.Propagation of Gaussian and Laguerre–Gaussian vortex beams through mouse brain tissue. J. Biophotonics. 10(12), 1756-1760(2017).L. ShiL. Shi et al.Propagation of Gaussian and Laguerre–Gaussian vortex beams through mouse brain tissue. J. Biophotonics. 10(12), 1756-1760(2017).

【17】Y. ZhouY. Zhou et al.Efficient two-photon excitation by photonic dimers. Opt. Lett. 44, 475-478(2019).Y. ZhouY. Zhou et al.Efficient two-photon excitation by photonic dimers. Opt. Lett. 44, 475-478(2019).

【18】B. CochenourB. Cochenour et al.Propagation of modulated optical beams carrying orbital angular momentum in turbid water. Appl. Opt. 55, C34-C38(2016).B. CochenourB. Cochenour et al.Propagation of modulated optical beams carrying orbital angular momentum in turbid water. Appl. Opt. 55, C34-C38(2016).

【19】W. B. WangW. B. Wang et al.Deep transmission of Laguerre–Gaussian vortex beams through turbid scattering media. Opt. Lett. 41, 2069-2072(2016).W. B. WangW. B. Wang et al.Deep transmission of Laguerre–Gaussian vortex beams through turbid scattering media. Opt. Lett. 41, 2069-2072(2016).

【20】Z. Chen, Y. Zhou and J.-T. Shen. Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system. Opt. Lett. 41, 3313-3316(2016).Z. Chen, Y. Zhou and J.-T. Shen. Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system. Opt. Lett. 41, 3313-3316(2016).

【21】L. GongL. Gong et al.Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl. 8, (2019).L. GongL. Gong et al.Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl. 8, (2019).

【22】C. Gopaul and R. Andrews. The effect of atmospheric turbulence on entangled orbital angular momentum states. New J. Phys. 9(4), (2007).C. Gopaul and R. Andrews. The effect of atmospheric turbulence on entangled orbital angular momentum states. New J. Phys. 9(4), (2007).

【23】M. KrennM. Krenn et al.Communication with spatially modulated light through turbulent air across Vienna. New J. Phys. 16(11), (2014).M. KrennM. Krenn et al.Communication with spatially modulated light through turbulent air across Vienna. New J. Phys. 16(11), (2014).

【24】M. KrennM. Krenn et al.Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648-13653(2016).M. KrennM. Krenn et al.Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648-13653(2016).

【25】F. BouchardF. Bouchard et al.Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express. 26(17), 22563-22573(2018).F. BouchardF. Bouchard et al.Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express. 26(17), 22563-22573(2018).

【26】F. HufnagelF. Hufnagel et al.Characterization of an underwater channel for quantum communications in the Ottawa river. Opt. Express. 27(19), 26346-26354(2019).F. HufnagelF. Hufnagel et al.Characterization of an underwater channel for quantum communications in the Ottawa river. Opt. Express. 27(19), 26346-26354(2019).

【27】H. Rubinsztein-DunlopH. Rubinsztein-Dunlop et al.Roadmap on structured light. J. Opt. 19, (2017).H. Rubinsztein-DunlopH. Rubinsztein-Dunlop et al.Roadmap on structured light. J. Opt. 19, (2017).

【28】Y. YuanY. Yuan et al.The orbital angular momentum spreading for cylindrical vector beams in turbulent atmosphere. IEEE Photonics J. 9(2), (2017).Y. YuanY. Yuan et al.The orbital angular momentum spreading for cylindrical vector beams in turbulent atmosphere. IEEE Photonics J. 9(2), (2017).

【29】W. Cheng, J. W. Haus and Q. Zhan. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express. 17, 17829-17836(2009).W. Cheng, J. W. Haus and Q. Zhan. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express. 17, 17829-17836(2009).

【30】M. ChengM. Cheng et al.Enhanced vortex beams resistance to turbulence with polarization modulation. J. Quant. Spectrosc. Radiat. Transfer. 227, 219-225(2019).M. ChengM. Cheng et al.Enhanced vortex beams resistance to turbulence with polarization modulation. J. Quant. Spectrosc. Radiat. Transfer. 227, 219-225(2019).

【31】Z. Chen, Y. Zhou and J.-T. Shen. Exact dissipation model for arbitrary photonic Fock state transport in waveguide QED systems. Opt. Lett. 42, 887-890(2017).Z. Chen, Y. Zhou and J.-T. Shen. Exact dissipation model for arbitrary photonic Fock state transport in waveguide QED systems. Opt. Lett. 42, 887-890(2017).

【32】Z. Chen, Y. Zhou and J.-T. Shen. Entanglement-preserving approach for reservoir-induced photonic dissipation in waveguide QED systems. Phys. Rev. A. 98, (2018).Z. Chen, Y. Zhou and J.-T. Shen. Entanglement-preserving approach for reservoir-induced photonic dissipation in waveguide QED systems. Phys. Rev. A. 98, (2018).

【33】B. Sick, B. Hecht and L. Novotny. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482-4485(2000).B. Sick, B. Hecht and L. Novotny. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482-4485(2000).

【34】F. Lu, W. Zheng and Z. Huang. Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light. Opt. Lett. 34, 1870-1872(2009).F. Lu, W. Zheng and Z. Huang. Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light. Opt. Lett. 34, 1870-1872(2009).

【35】J. Li, M. Zhang and D. Wang. Adaptive demodulator using machine learning for orbital angular momentum shift keying. IEEE Photonics Technol. Lett. 29(17), 1455-1458(2017).J. Li, M. Zhang and D. Wang. Adaptive demodulator using machine learning for orbital angular momentum shift keying. IEEE Photonics Technol. Lett. 29(17), 1455-1458(2017).

【36】J. Ng, Z. Lin and C. T. Chan. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 104, (2010).J. Ng, Z. Lin and C. T. Chan. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 104, (2010).

【37】A. V. Nesterov and V. G. Niziev. Laser beams with axially symmetric polarization. J. Phys. D Appl. Phys. 33, 1817-1822(2000).A. V. Nesterov and V. G. Niziev. Laser beams with axially symmetric polarization. J. Phys. D Appl. Phys. 33, 1817-1822(2000).

【38】G. MilioneG. Milione et al.4×20 gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett. 40, 1980-1983(2015).G. MilioneG. Milione et al.4×20 gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett. 40, 1980-1983(2015).

【39】N. BozinovicN. Bozinovic et al.Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 340(6140), 1545-1548(2013).N. BozinovicN. Bozinovic et al.Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 340(6140), 1545-1548(2013).

【40】V. D’AmbrosioV. D’Ambrosio et al.Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3, (2012).V. D’AmbrosioV. D’Ambrosio et al.Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3, (2012).

【41】R. FicklerR. Fickler et al.Quantum entanglement of high angular momenta. Science. 338(6107), 640-643(2012).R. FicklerR. Fickler et al.Quantum entanglement of high angular momenta. Science. 338(6107), 640-643(2012).

【42】A. DoroninA. Doronin et al.Propagation of cylindrical vector laser beams in turbid tissue-like scattering media. Photonics. 6(2), (2019).A. DoroninA. Doronin et al.Propagation of cylindrical vector laser beams in turbid tissue-like scattering media. Photonics. 6(2), (2019).

【43】S. MamaniS. Mamani et al.Transmission of classically entangled beams through mouse brain tissue. J. Biophotonics. 11(12), (2018).S. MamaniS. Mamani et al.Transmission of classically entangled beams through mouse brain tissue. J. Biophotonics. 11(12), (2018).

【44】K. S. MorganK. S. Morgan et al.Free space propagation of concentric vortices through underwater turbid environments. J. Opt. 18, (2016).K. S. MorganK. S. Morgan et al.Free space propagation of concentric vortices through underwater turbid environments. J. Opt. 18, (2016).

【45】L. AllenL. Allen et al.Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A. 45, 8185-8189(1992).L. AllenL. Allen et al.Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A. 45, 8185-8189(1992).

【46】M. Padgett, J. Courtial and L. Allen. Light’s orbital angular momentum. Phys. Today. 57(5), (2004).M. Padgett, J. Courtial and L. Allen. Light’s orbital angular momentum. Phys. Today. 57(5), (2004).

【47】L. Marrucci, C. Manzo and D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, (2006).L. Marrucci, C. Manzo and D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, (2006).

【48】F. CardanoF. Cardano et al.Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt. 51, C1-C6(2012).F. CardanoF. Cardano et al.Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt. 51, C1-C6(2012).

【49】B. NdaganoB. Ndagano et al.Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol. 36(2), 292-301(2018).B. NdaganoB. Ndagano et al.Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol. 36(2), 292-301(2018).

【50】. Scattering length calculator for Mie spheres. (0).. Scattering length calculator for Mie spheres. (0).

引用该论文

Ilaria Gianani,Alessia Suprano,Taira Giordani,Nicolò Spagnolo,Fabio Sciarrino,Dimitris Gorpas,Vasilis Ntziachristos,Katja Pinker,Netanel Biton,Judy Kupferman,Shlomi Arnon. Transmission of vector vortex beams in dispersive media[J]. Advanced Photonics, 2020, 2(3): 036003

Ilaria Gianani,Alessia Suprano,Taira Giordani,Nicolò Spagnolo,Fabio Sciarrino,Dimitris Gorpas,Vasilis Ntziachristos,Katja Pinker,Netanel Biton,Judy Kupferman,Shlomi Arnon. Transmission of vector vortex beams in dispersive media[J]. Advanced Photonics, 2020, 2(3): 036003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF