首页 > 论文 > 中国激光 > 46卷 > 7期(pp:702006--1)

碳纤维增强热塑性复合材料/铝合金激光搅拌焊接实验及仿真研究

Experimental and Numerical Studies on Laser Stir Welding of Carbon Fiber Reinforced Thermal Polymers/Aluminum Alloy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为降低碳纤维增强热塑性复合材料(CFRTP)与铝合金进行激光焊接时,激光加热对铝合金造成的焊接缺陷,提升焊接接头的力学性能,将激光搅拌焊接方法引入到铝合金与CFRTP的焊接中。通过与传统的激光直线焊接方法进行对比后发现:在相同的激光功率和焊接速度下,激光搅拌焊接接头的连接强度为传统激光直线焊接的3.25倍;激光搅拌焊接还可以显著减少气孔缺陷,获得较好的焊缝形貌。为进一步研究CFRTP/铝合金激光搅拌焊接的机理,对CFRTP/铝合金激光搅拌焊接温度场进行仿真分析,结果表明:铝合金表面的温度场呈非等幅振荡形式变化,且出现了两个峰值,这是激光搅拌焊接能够降低焊接缺陷的主要原因之一。同时,对铝合金焊缝的熔深、熔宽进行计算,并与测量结果进行对比,仿真结果与实验结果的误差在9.87%以内。

Abstract

In this paper, we introduce the laser stir welding method to reduce the welding defect of laser heating to aluminum alloy during the laser welding of carbon fiber reinforced thermal polymers (CFRTP)/aluminum alloy and improve the mechanical properties of welded joints during the jointing process. With the same laser power and welding speed, the jointing strength of this method is 3.25 times of that of the traditional linear welding method. Moreover, the bubble defect in laser stir welding is significantly reduced, and a good welding morphology is obtained. Further, the temperature field in the laser stir welding of the CFRTP/aluminum alloy is simulated to study the mechanism of laser stir welding in CFRTP/aluminum alloy. The results show that the temperature on the surface of aluminum alloy changes in the form of a non-equal amplitude oscillation. Two peaks are observed, and laser stir welding can reduce the welding defect owing to these peaks, amongst other reasons. The weld depth and width are calculated, and the error is within 9.87%.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0702006

所属栏目:激光制造

基金项目:国家自然科学基金“两化融合”联合基金; 中国科学院青年创新促进会资助项目; 国家商用飞机制造工程技术研究中心创新基金; 深圳市基础研究布局项目; 宁波市国际合作项目;

收稿日期:2019-01-02

修改稿日期:2019-03-07

网络出版日期:2019-07-01

作者单位    点击查看

贾少辉:南昌大学机电工程学院, 江西 南昌 330031中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201
贾剑平:南昌大学机电工程学院, 江西 南昌 330031
焦俊科:中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201
徐子法:中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201
欧阳文泰:中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201
张文武:中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201

联系人作者:贾剑平, 焦俊科( ncujjp@126.com, ncujjp@126.com)

备注:国家自然科学基金“两化融合”联合基金; 中国科学院青年创新促进会资助项目; 国家商用飞机制造工程技术研究中心创新基金; 深圳市基础研究布局项目; 宁波市国际合作项目;

【1】Yang S J and Dai S L. A glimpse at the development and application of aluminum alloys in aviation industry. Materials Review. 19(2), 76-80(2005).
杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望. 材料导报. 19(2), 76-80(2005).

【2】Fu B L, Meng X M, Qin G L et al. Research progress on laser beam welding of aluminum alloys Welding & Joining. 2013(6), 20-25, 69(0).
付邦龙, 孟祥萌, 秦国梁 等. 铝合金激光焊接技术的研究进展 焊接. 2013(6), 20-25, 69(0).

【3】Wang H Y, Sun J and Liu L M. Formation and controlling mechanism of pores in laser-TIG hybrid welding of 6061-T6 aluminum alloys at high peed. Chinese Journal of Lasers. 45(3), (2018).
王红阳, 孙佳, 刘黎明. 6061-T6铝合金激光-电弧复合高速焊气孔形成及控制机制. 中国激光. 45(3), (2018).

【4】Li F Q, Feng S, Li M W et al. Softening phenomenon of heat-affected zone in laser welding of 6082 Al alloys with filler wire. Chinese Journal of Lasers. 45(11), (2018).
李福泉, 冯时, 李明伟 等. 6082铝合金激光填丝焊热影响区的软化现象. 中国激光. 45(11), (2018).

【5】Tuo W H, Yang S L, Yang W T et al. Microstructure and fatigue performance of MIG welded joint of 6082-T6 aluminum alloy used for rail transportation. Materials Reports. 29(20), 105-109(2015).
庹文海, 杨尚磊, 杨文涛 等. 轨道交通用6082-T6铝合金MIG焊接接头组织与疲劳性能. 材料导报. 29(20), 105-109(2015).

【6】Tan X H, Zhang J, Shan J G et al. Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel. Composites Part B: Engineering. 70, 35-43(2015).

【7】Zhang X D, Chen W Z, Bao G et al. Improvement of weld quality using a weaving beam in laser welding. Journal of Materials Science & Technology. 20(5), 633-636(2004).

【8】Zhou L T, Wang X Y, Wang W et al. Effects of laser scanning welding process on porosity rate of aluminum alloy[J]. 35(10): 65-68. 72, (2014).
周立涛, 王旭友, 王威 等. 35(10): 65-68. . 激光扫描焊接工艺对铝合金焊接气孔率的影响. 焊接学报. 72, (2014).

【9】Fetzer F, Sommer M, Weber R et al. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi. Optics and Lasers in Engineering. 108, 68-77(2018).

【10】Wu S C, Zhu Z T and Li X W. Laser welding of aluminum alloys and the performance evaluation. 66, (2014).
吴圣川, 朱宗涛, 李向伟. 铝合金的激光焊接及性能评价. 66, (2014).

【11】Bao G, Peng Y, Chen W Z et al. Study on laser welding of ultra-fine grained steel with weaving beam. Applied Laser. 22(2), 203-205, 208(2002).
包刚, 彭云, 陈武柱 等. 超细晶粒钢光束摆动激光焊接的研究. 应用激光. 22(2), 203-205, 208(2002).

【12】Hugger F, Hofmann K, Kohl S et al. Spatter formation in laser beam welding using laser beam oscillation. Welding in the World. 59(2), 165-172(2015).

【13】Jiao J K, Wang Q, Wang F Y et al. Numerical and experimental investigation on joining CFRTP and stainless steel using fiber lasers. Journal of Materials Processing Technology. 240, 362-369(2017).

【14】Wang Q, Jiao J K, Zan S P et al. Effect of thermal contact conductance on temperature field of CFRTP/stainless steel laser direct joining. Chinese Journal of Lasers. 44(4), (2017).
王强, 焦俊科, 昝少平 等. 接触热导率对CFRTP/不锈钢激光直接连接温度场的影响. 中国激光. 44(4), (2017).

【15】Zheng Z T, Lü H M, Zhang K et al. Fusion welding heat source model and its trend Welding & Joining. 2008(4), 3-6(0).
郑振太, 吕会敏, 张凯 等. 熔化焊焊接热源模型及其发展趋势 焊接. 2008(4), 3-6(0).

【16】Haeusler A, Schürmann A, Sch?ler C et al. Quality improvement of copper welds by laser microwelding with the usage of spatial power modulation. Journal of Laser Applications. 29(2), (2017).

引用该论文

Shaohui Jia, Jianping Jia, Junke Jiao, Zifa Xu, Wentai Ouyang, Wenwu Zhang. Experimental and Numerical Studies on Laser Stir Welding of Carbon Fiber Reinforced Thermal Polymers/Aluminum Alloy[J]. Chinese Journal of Lasers, 2019, 46(7): 0702006

贾少辉, 贾剑平, 焦俊科, 徐子法, 欧阳文泰, 张文武. 碳纤维增强热塑性复合材料/铝合金激光搅拌焊接实验及仿真研究[J]. 中国激光, 2019, 46(7): 0702006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF