首页 > 论文 > 中国激光 > 46卷 > 8期(pp:810002--1)

接收数值孔径和粗糙目标尺寸对稀疏限制的鬼成像影响研究

Influence of Receiving Numerical Aperture and Rough Target Size on Ghost Imaging via Sparsity Constraint

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计一种针对粗糙表面目标的基于稀疏限制的鬼成像(GISC)实验装置,研究并分析接收系统的数值孔径与粗糙目标尺寸对GISC成像性能的影响。结果表明,粗糙目标的GISC成像质量与接收系统的数值孔径和目标尺寸均呈正相关。本研究可以为GISC装置中接收系统的光路设计提供重要参考。

Abstract

An experimental setup of ghost imaging via sparsity constraints (GISC) for a rough surface target is designed, and the influences of both the numerical aperture of receiving system and rough target size on imaging performance of GISC are investigated and analyzed by using this setup. The results demonstrate that the imaging quality of GISC for the rough surface target is positive in relation to both parameters. This research could be considered as an instructive role for the optical system design of a GISC system.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0810002

所属栏目:遥感与传感器

基金项目:国防基础科研计划资助、国家自然科学基金、中国科学院青年创新促进会优秀会员基金;

收稿日期:2019-03-01

修改稿日期:2019-04-08

网络出版日期:2019-08-01

作者单位    点击查看

王成龙:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
龚文林:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
邵学辉:宇航智能控制技术国家级重点实验室, 北京 100089
韩申生:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800

联系人作者:龚文林(gongwl@siom.ac.cn)

备注:国防基础科研计划资助、国家自然科学基金、中国科学院青年创新促进会优秀会员基金;

【1】Council N R. Laser radar: progress and opportunities in active electro-optical sensing. Washington, D.C.: National Academy of Sciences. 6-106(2014).

【2】Geiger A, Lenz P and Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, Rhode Island. New York: IEEE. 3354-3361(2012).

【3】Goodman J W. Speckle phenomena in optics: theory and applications. Englewood Colorado: Roberts and Company Publishers. 7-163(2006).

【4】Goodman J W. Statistical properties of laser speckle patterns. ∥Dainty J C. Laser speckle and related phenomena. Berlin, Heidelberg: Springer. 9-75(1975).

【5】Shapiro J H and Boyd R W. The physics of ghost imaging. Quantum Information Processing. 11(4), 949-993(2012).

【6】Gong W L and Han S S. A method to improve the visibility of ghost images obtained by thermal light. Physics Letters A. 374(8), 1005-1008(2010).

【7】Pan L, Deng C J, Gong W L et al. Influence of chirped-amplitude correlated imaging under incoherent detection. Acta Optica Sinica. 38(10), (2018).
潘龙, 邓陈进, 龚文林 等. 非相干探测模式下啁啾调幅关联成像影响因素研究. 光学学报. 38(10), (2018).

【8】Yan Y Q, Zhao C Q, Xu W D et al. Research on the terahertz active ghost imaging technology. Chinese Journal of Lasers. 45(8), (2018).
闫昱琪, 赵成强, 徐文东 等. 太赫兹主动关联成像技术研究. 中国激光. 45(8), (2018).

【9】Du J, Gong W L and Han S S. The influence of sparsity property of images on ghost imaging with thermal light. Optics Letters. 37(6), 1067-1069(2012).

【10】Gong W L and Han S S. High-resolution far-field ghost imaging via sparsity constraint. Scientific Reports. 5, (2015).

【11】Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints. Applied Physics Letters. 101(14), (2012).

【12】Gong W L and Han S S. Correlated imaging in scattering media. Optics Letters. 36(3), 394-396(2011).

【13】Chen W and Chen X D. Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit. Optics Letters. 38(4), 546-548(2013).

【14】Zhang P L, Gong W L, Shen X et al. Improving resolution by the second-order correlation of light fields. Optics Letters. 34(8), 1222-1224(2009).

【15】Wang C F, Zhang D W, Bai Y F et al. Ghost imaging for a reflected object with a rough surface. Physical Review A. 82(6), (2010).

【16】Nan S Q, Bai Y F, Shi X H et al. Experimental investigation of ghost imaging of reflective objects with different surface roughness. Photonics Research. 5(4), 372-376(2017).

【17】Gong W L. Correlated imaging for a reflective target with a smooth or rough surface. Journal of Optics. 18(8), (2016).

【18】Hardy N D and Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging. Physical Review A. 87(2), (2013).

【19】Mei X D, Gong W L, Yan Y et al. Experimental research on prebuilt three-dimensional imaging lidar. Chinese Journal of Lasers. 43(7), (2016).
梅笑冬, 龚文林, 严毅 等. 可预置强度关联激光三维成像雷达实验研究. 中国激光. 43(7), (2016).

【20】Gong W L, Wang C L, Mei X D et al. Recent research progress and thoughts on GISC Lidar with respect to practical applications. Infrared and Laser Engineering. 47(3), (2018).
龚文林, 王成龙, 梅笑冬 等. 面向实际应用的GISC Lidar近期研究进展与思考. 红外与激光工程. 47(3), (2018).

【21】Candès E J and Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine. 25(2), 21-30(2008).

【22】Martienssen W and Spiller E. Coherence and fluctuations in light beams. American Journal of Physics. 32(12), 919-926(1964).

【23】Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing. 13(4), 600-612(2004).

【24】Wang J, Kwon S, Li P et al. Recovery of sparse signals via generalized orthogonal matching pursuit: a new analysis. IEEE Transactions on Signal Processing. 64(4), 1076-1089(2016).

引用该论文

Chenglong Wang, Wenlin Gong, Xuehui Shao, Shensheng Han. Influence of Receiving Numerical Aperture and Rough Target Size on Ghost Imaging via Sparsity Constraint[J]. Chinese Journal of Lasers, 2019, 46(8): 0810002

王成龙, 龚文林, 邵学辉, 韩申生. 接收数值孔径和粗糙目标尺寸对稀疏限制的鬼成像影响研究[J]. 中国激光, 2019, 46(8): 0810002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF