首页 > 论文 > 中国激光 > 46卷 > 10期(pp:1000001--1)

飞秒激光直写技术制备功能化微流控芯片研究进展

Research Progress on Fabrication of Functional Microfluidic Chips Using Femtosecond Laser Direct Writing Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

飞秒激光具有独特的超短脉宽和极高的峰值强度,飞秒激光直写技术已广泛用于功能化微流控芯片的制备。从3个方面针对基于飞秒激光直写技术的微流控芯片进行综述:不同材料微流控芯片中的飞秒激光功能器件集成技术、飞秒激光集成微流控芯片的多功能应用以及微流控芯片的高效率飞秒激光加工技术。通过对飞秒激光直写技术在微流控领域的研究结果进行总结与归纳,为飞秒激光直写技术制备微流控芯片的研究、应用及发展方向提供参考。

Abstract

Femtosecond laser direct writing technology has been extensively used for the preparation of functional microfluidic chips because of ultrashort pulse duration and extremely high peak intensity of femtosecond lasers. This study summarizes the following three research directions based on the direct writing technology of femtosecond lasers for microfluidic chips: the integration technology of functional devices fabricated by femtosecond lasers in microfluidic chips with different materials, the multi-functional applications of microfluidic chips integrated by femtosecond lasers, and the rapid processing of microfluidic chips using femtosecond lasers. Furthermore, according to the summaries on the research results of femtosecond laser direct writing technology in the field of microfluidics, this study provides a reference for the research, application, and future development of the microfluidic chips prepared using femtosecond laser direct writing technology.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249

DOI:10.3788/CJL201946.1000001

所属栏目:综述

基金项目:国家自然科学基金、安徽省高校优秀青年骨干人才国内外访学研修项目 、中央高校基本科研业务费专项资金、江苏省高校教师专业带头人高端研修项目;

收稿日期:2019-04-17

修改稿日期:2019-05-27

网络出版日期:2019-10-01

作者单位    点击查看

史杨:中国科学技术大学工程科学学院, 安徽 合肥 230026
许兵:中国科学技术大学工程科学学院, 安徽 合肥 230026
吴东:中国科学技术大学工程科学学院, 安徽 合肥 230026
肖轶:南通职业大学机械工程学院, 江苏 南通 226007
胡衍雷:中国科学技术大学工程科学学院, 安徽 合肥 230026
姚成立:合肥师范学院化学与化学工程学院, 安徽 合肥 230601

联系人作者:许兵(Xb022@mail.ustc.edu.cn); 肖轶(xiaoyiphd@163.com);

备注:国家自然科学基金、安徽省高校优秀青年骨干人才国内外访学研修项目 、中央高校基本科研业务费专项资金、江苏省高校教师专业带头人高端研修项目;

【1】Lin B C and Qin J H. Diagram of laboratory on a microfluidic chip. (2008).
林炳承, 秦建华. 图解微流控芯片实验室. (2008).

【2】Whitesides G M. The origins and the future of microfluidics. Nature. 442(7101), 368-373(2006).

【3】Song Y J, Zhang Y Q, Bernard P E et al. Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nature Communications. 3, (2012).

【4】Manz A, Graber N and Widmer H M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B: Chemical. 1, 244-248(1990).

【5】Craighead H. Future lab-on-a-chip technologies for interrogating individual molecules. ∥Rodgers P. Nanoscience and technology. Singapore: World Scientific. 330-336(2009).

【6】deMello A J. Control and detection of chemical reactions in microfluidic systems. Nature. 442(7101), 394-402(2006).

【7】El-Ali J, Sorger P K and Jensen K F. Cells on chips. Nature. 442(7101), 403-411(2006).

【8】Janasek D, Franzke J and Manz A. Scaling and the design of miniaturized chemical-analysis systems. Nature. 442(7101), 374-380(2006).

【9】Psaltis D, Quake S R and Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 442(7101), 381-386(2006).

【10】Yager P, Edwards T, Fu E et al. Microfluidic diagnostic technologies for global public health. Nature. 442(7101), 412-418(2006).

【11】Gao X H, Jiang L, Su X O et al. Microvalves actuated sandwich immunoassay on an integrated microfluidic system. Electrophoresis. 30(14), 2481-2487(2009).

【12】Kong J, Jiang L, Su X O et al. Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab on a Chip. 9(11), 1541-1547(2009).

【13】Li B W, Jiang L, Xie H et al. Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip. Electrophoresis. 30(17), 3053-3057(2009).

【14】Li C Y, Dong X L, Qin J H et al. Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device. Analytica Chimica Acta. 640(1/2), 93-99(2009).

【15】Li Z Y, Sun K, Sunayama M et al. On-chip fraction collection for multiple selected ssDNA fragments using isolated extraction channels. Journal of Chromatography A. 1218(7), 997-1003(2011).

【16】Zhang Y, Yu H, Qin J H et al. A microfluidic DNA computing processor for gene expression analysis and gene drug synthesis. Biomicrofluidics. 3(4), (2009).

【17】Sun K, Suzuki N, Li Z Y et al. High-fidelity fractionation of ssDNA fragments differing in size by one-base on a spiral-channel electrophoretic chip. Electrophoresis. 30(24), 4277-4284(2009).

【18】Blazej R G, Kumaresan P and Mathies R A. Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America. 103(19), 7240-7245(2006).

【19】Huang S Q, Li C Y, Lin B C et al. Microvalve and micropump controlled shuttle flow microfluidic device for rapid DNA hybridization. Lab on a Chip. 10(21), 2925-2931(2010).

【20】Melin J and Quake S R. Microfluidic large-scale integration: the evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure. 36, 213-231(2007).

【21】Song M C, Liu Y, Zhu T L et al. Injection molding of plastic microfluidic chip. Nanotechnology and Precision Engineering. 9(4), 329-334(2011).
宋满仓, 刘莹, 祝铁丽 等. 塑料微流控芯片的注塑成型. 纳米技术与精密工程. 9(4), 329-334(2011).

【22】Song M C, Liu Z, You T M et al. Experiment research and numerical simulation of injection molding characteristics for ultra-thin wall plastic parts. Chinese Journal of Mechanical Engineering. 44(8), 148-151(2008).
宋满仓, 刘柱, 于同敏 等. 超薄塑件注塑成形特性的试验研究与数值模拟. 机械工程学报. 44(8), 148-151(2008).

【23】Du X G, Guan Y X, Wang F R et al. Fabrication of poly(methyl methacrylate)(PMMA) microfluidic chips by a simple hot embossing method. Chemical Journal of Chinese Universities. 24(11), 1962-1966(2003).
杜晓光, 关艳霞, 王福仁 等. 聚甲基丙烯酸甲酯微流控分析芯片的简易热压制作法. 高等学校化学学报. 24(11), 1962-1966(2003).

【24】Sugioka K and Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing. Light: Science & Applications. 3(4), (2014).

【25】Gattass R R and Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics. 2(4), 219-225(2008).

【26】Stuart B C, Feit M D, Rubenchik A M et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Physical Review Letters. 74(12), 2248-2251(1995).

【27】Sun H B and Kawata S. Two-photon photopolymerization and 3D lithographic microfabrication. ∥Fatkullin N, Ikehara T, Jinnai, et al. Advances in polymer science. Berlin, Heidelberg: Springer. 170, 169-273(2006).

【28】Maruo S and Fourkas J T. Recent progress in multiphoton microfabrication. Laser & Photonics Reviews. 2(1/2), 100-111(2008).

【29】Cao Y Y, Gan Z S, Jia B H et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Optics Express. 19(20), 19486-19494(2011).

【30】Takada K, Sun H B and Kawata S. Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Applied Physics Letters. 86(7), (2005).

【31】Galajda P and Ormos P. Complex micromachines produced and driven by light. Applied Physics Letters. 78(2), 249-251(2001).

【32】Lin X F, Hu G Q, Chen Q D et al. A light-driven turbine-like micro-rotor and study on its light-to-mechanical power conversion efficiency. Applied Physics Letters. 101(11), (2012).

【33】Maruo S, Ikuta K and Korogi H. Submicron manipulation tools driven by light in a liquid. Applied Physics Letters. 82(1), 133-135(2003).

【34】Maruo S and Inoue H. Optically driven micropump produced by three-dimensional two-photon microfabrication. Applied Physics Letters. 89(14), (2006).

【35】Maruo S, Takaura A and Saito Y. Optically driven micropump with a twin spiral microrotor. Optics Express. 17(21), 18525-18532(2009).

【36】Sun H B and Kawata S. Two-photon laser precision microfabrication and its applications to micro-nano devices and systems. Journal of Lightwave Technology. 21(3), 624-633(2003).

【37】Tian Y, Lu D X, Jiang H B et al. Preparation of a novel ferrofluidic photoresist for two-photon photopolymerization technique. Journal of Magnetism and Magnetic Materials. 324(20), 3291-3294(2012).

【38】Tian Y, Zhang Y L, Ku J F et al. High performance magnetically controllable microturbines. Lab on a Chip. 10(21), 2902-2905(2010).

【39】Wang J, Xia H, Xu B B et al. Remote manipulation of micronanomachines containing magnetic nanoparticles. Optics Letters. 34(5), 581-583(2009).

【40】Xia H, Wang J, Tian Y et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Advanced Materials. 22(29), 3204-3207(2010).

【41】Zhu W, Li J X, Leong Y J et al. 3D-printed artificial microfish. Advanced Materials. 27(30), 4411-4417(2015).

【42】Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nanotoday. 5(5), 435-448(2010).

【43】Sun C K, Vallée F, Acioli L H et al. Femtosecond-tunable measurement of electron thermalization in gold. Physical Review B. 50(20), 15337-15348(1994).

【44】Raimondi M T, Eaton S M, Nava M M et al. Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine. Journal of Applied Biomaterials &Functional Materials. 10(1), 56-66(2012).

【45】Tan D F, Li Y, Qi F J et al. Reduction in feature size of two-photon polymerization using SCR500. Applied Physics Letters. 90(7), (2007).

【46】Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices. Nature. 412(6848), 697-698(2001).

【47】Wong C C, Liu Y X, Wang K Y et al. Size based sorting and patterning of microbeads by evaporation driven flow in a 3D micro-traps array. Lab on a Chip. 13(18), 3663-3667(2013).

【48】Liao Y, Song J X, Li E et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab on a Chip. 12(4), 746-749(2012).

【49】Agarwal M, Gunasekaran R A, Coane P et al. Polymer-based variable focal length microlens system. Journal of Micromechanics and Microengineering. 14(12), 1665-1673(2004).

【50】Heikenfeld J, Jajack A, Rogers J et al. Wearable sensors: modalities, challenges, and prospects. Lab on a Chip. 18(2), 217-248(2018).

【51】Yu H B, Zhou G Y, Chau F K et al. A liquid-filled tunable double-focus microlens. Optics Express. 17(6), 4782-4790(2009).

【52】Chronis N, Liu G L, Jeong K H et al. Tunable liquid-filled microlens array integrated with microfluidic network. Optics Express. 11(19), 2370-2378(2003).

【53】Hong T F, Ju W J, Wu M C et al. Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluidics and Nanofluidics. 9(6), 1125-1133(2010).

【54】Love J C, Wolfe D B, Jacobs H O et al. Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography. Langmuir. 17(19), 6005-6012(2001).

【55】Wang J, He Y, Xia H et al. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab on a Chip. 10(15), 1993-1996(2010).

【56】Sima F, Kawano H, Miyawaki A et al. 3D biomimetic chips for cancer cell migration in nanometer-sized spaces using “ship-in-a-bottle” femtosecond laser processing. ACS Applied Bio Materials. 1(5), 1667-1676(2018).

【57】Xu B, Du W Q, Li J W et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Scientific Reports. 6, (2016).

【58】Diepold T and Obermeier E. Smoothing of ultrasonically drilled holes in borosilicate glass by wet chemical etching. Journal of Micromechanics and Microengineering. 6(1), 29-32(1996).

【59】McDonald J C and Whitesides G M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research. 35(7), 491-499(2002).

【60】Akbari S, Pirbodaghi T, Kamm R D et al. A versatile microfluidic device for high throughput production of microparticles and cell microencapsulation. Lab on a Chip. 17(12), 2067-2075(2017).

【61】Xu B, Shi Y, Lao Z X et al. Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging. Lab on a Chip. 18(3), 442-450(2018).

【62】Chung J, Kim Y J and Yoon E. Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Applied Physics Letters. 98(12), (2011).

【63】Kim J, Erath J, Rodriguez A et al. A high-efficiency microfluidic device for size-selective trapping and sorting. Lab on a Chip. 14(14), 2480-2490(2014).

【64】Liu Y J, Chen P Y, Yang J Y et al. Three-dimensional passive micromixer fabricated by two-photon polymerization for microfluidic mixing. Sensors and Materials. 26(2), 39-44(2014).

【65】Li G Q, Fan H, Ren F F et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration. Journal of Materials Chemistry A. 4(48), 18832-18840(2016).

【66】Nagrath S, Sequist L V, Maheswaran S et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 450(7173), 1235-1239(2007).

【67】Wei H B, Chueh B H, Wu H L et al. Particle sorting using a porous membrane in a microfluidic device. Lab on a Chip. 11(2), 238-245(2011).

【68】Yamada M, Nakashima M and Seki M. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Analytical Chemistry. 76(18), 5465-5471(2004).

【69】McFaul S M, Lin B K and Ma H S. Cell separation based on size and deformability using microfluidic funnel ratchets. Lab on a Chip. 12(13), 2369-2376(2012).

【70】Xu B, Hu W J, Du W Q et al. Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Optics Express. 25(14), 16739-16753(2017).

【71】Yoon Y, Kim S, Lee J et al. Clogging-free microfluidics for continuous size-based separation of microparticles. Scientific Reports. 6, (2016).

【72】Skowronek V, Rambach R W and Franke T. Surface acoustic wave controlled integrated band-pass filter. Microfluidics and Nanofluidics. 19(2), 335-341(2015).

【73】Wang X and Papautsky I. Size-based microfluidic multimodal microparticle sorter. Lab on a Chip. 15(5), 1350-1359(2015).

【74】Zhang D Y, Men L Q and Chen Q Y. Femtosecond laser microfabricated microfilters for particle-liquid separation in a microfluidic chip. IEEE Journal of Selected Topics in Quantum Electronics. 25(1), (2019).

【75】Bertin N, Spelman T A, Combriat T et al. Bubble-based acoustic micropropulsors: active surfaces and mixers. Lab on a Chip. 17(8), 1515-1528(2017).

【76】van‘t Oever J, Spannenburg N, Offerhaus H et al. . In-chip direct laser writing of a centimeter-scale acoustic micromixer. Journal of Micro/Nanolithography, MEMS, and MOEMS. 14(2), (2015).

【77】Lin C L, Liu Y J, Lin Z D et al. Laser direct writing 3D structures for microfluidic channels: flow meter and mixer. Proceedings of SPIE. 9730, (2015).

【78】Oellers M, Bunge F, Lucklum F et al. 2(13), (2018).

【79】Liu Y J, Yang J Y, Nie Y M et al. A simple and direct reading flow meter fabricated by two-photon polymerization for microfluidic channel. Microfluidics and Nanofluidics. 18(3), 427-431(2015).

【80】Hu W J, Xu B, Shi Y et al. Flow sensor with high sensitivity fabricated by femtosecond laser. Chinese Journal of Lasers. 45(9), (2018).
胡文锦, 许兵, 史杨 等. 飞秒激光制备高敏感度流量传感器. 中国激光. 45(9), (2018).

【81】Chen Q D, Lin X F, Niu L G et al. Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization. Optics Letters. 33(21), 2559-2561(2008).

【82】Chen Q D, Wu D, Niu L G et al. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization. Applied Physics Letters. 91(17), (2007).

【83】Guo R and Xiao S Z. ZhaiX M, et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express. 14(2), 810-816(2006).

【84】Niu L G, Wang D, Jiang T et al. High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing. Optics Communications. 284(3), 777-781(2011).

【85】Seet K K, Mizeikis V, Matsuo S et al. Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing. Advanced Materials. 17(5), 541-545(2005).

【86】Sun H B, Matsuo S and Misawa H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Applied Physics Letters. 74(6), 786-788(1999).

【87】Wu D, Niu L G, Chen Q D et al. High efficiency multilevel phase-type fractal zone plates. Optics Letters. 33(24), 2913-2915(2008).

【88】Wu D, Wu S Z, Niu L G et al. High numerical aperture microlens arrays of close packing. Applied Physics Letters. 97(3), (2010).

【89】von Freymann G, Ledermann A, Thiel M et al. . Three-dimensional nanostructures for photonics. Advanced Functional Materials. 20(7), 1038-1052(2010).

【90】Eaton S M, de Marco C, Martinez-Vazquez R et al. . Femtosecond laser microstructuring for polymeric lab-on-chips. Journal of Biophotonics. 5(8/9), 687-702(2012).

【91】Stichel T, Hecht B, Houbertz R et al. Two-photon polymerization as method for the fabrication of large scale biomedical scaffold applications. Journal of Laser Micro/Nanoengineering. 5(3), 209-212(2010).

【92】Gittard S D, Narayan R J, Jin C et al. Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles . Biofabrication. 1(4), (2009).

【93】Z ukauskas A, Tikui is K K, iuka M et al. . Single-step direct laser fabrication of complex shaped microoptical components. Proceedings of SPIE. 8428, (2012).

【94】Seow Y C, Liu A Q, Chin L K et al. Different curvatures of tunable liquid microlens via the control of laminar flow rate. Applied Physics Letters. 93(8), (2008).

【95】Lu D X, Zhang Y L, Han D D et al. Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. Journal of Materials Chemistry C. 3(8), 1751-1756(2015).

【96】Wu D, Niu L G, Wu S Z et al. Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate. Lab on a Chip. 15(6), 1515-1523(2015).

【97】L lsberg J, Linkhorst J, Cinar A et al. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres. Lab on a Chip. 18(9), 1341-1348(2018).

【98】Zhou W H, Kuebler S M, Braun K et al. An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science. 296(5570), 1106-1109(2002).

【99】Tanaka T, Sun H B and Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system. Applied Physics Letters. 80(2), 312-314(2002).

【100】Wu D, Chen Q D, Niu L G et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab on a Chip. 9(16), 2391-2394(2009).

【101】Kato J, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication. Applied Physics Letters. 86(4), (2005).

【102】Dong X Z, Zhao Z S and Duan X M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing. Applied Physics Letters. 91(12), (2007).

【103】Jesacher A and Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Optics Express. 18(20), 21090-21099(2010).

【104】Obata K, Koch J, Hinze U et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Optics Express. 18(16), 17193-17200(2010).

【105】Takahashi H, Hasegawa S, Takita A et al. Sparse-exposure technique in holographic two-photon polymerization. Optics Express. 16(21), 16592-16599(2008).

【106】Yamaji M, Kawashima H, Suzuki J et al. Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram. Applied Physics Letters. 93(4), (2008).

【107】Jenness N J, Hill R T, Hucknall A et al. A versatile diffractive maskless lithography for single-shot and serial microfabrication. Optics Express. 18(11), 11754-11762(2010).

【108】Zhang C C, Hu Y L, Li J W et al. An improved multi-exposure approach for high quality holographic femtosecond laser patterning. Applied Physics Letters. 105(22), (2014).

【109】Zhang S J, Li Y, Liu Z P et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Applied Physics Letters. 105(6), (2014).

【110】Zhang C C, Hu Y L, Du W Q et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Scientific Reports. 6, (2016).

引用该论文

Shi Yang,Xu Bing,Wu Dong,Xiao Yi,Hu Yanlei,Yao Chengli. Research Progress on Fabrication of Functional Microfluidic Chips Using Femtosecond Laser Direct Writing Technology[J]. Chinese Journal of Lasers, 2019, 46(10): 1000001

史杨,许兵,吴东,肖轶,胡衍雷,姚成立. 飞秒激光直写技术制备功能化微流控芯片研究进展[J]. 中国激光, 2019, 46(10): 1000001

被引情况

【1】龙婧,焦玢璋,范旭浩,刘耘呈,邓磊敏,曲良体,熊伟. 飞秒激光组装一维纳米材料及其应用. 中国激光, 2021, 48(2): 202017--1

【2】梁密生,李欣,王猛猛,原永玖,陈孝喆,许晨阳,左佩. 空间整形飞秒激光加工金属微细槽实验研究. 中国激光, 2021, 48(2): 202003--1

【3】王兴盛,黄宇珂,沈博,徐斌,章剑,缪洁良. 短/超短脉冲激光诱导等离子体微加工研究进展. 激光与光电子学进展, 2020, 57(11): 111405--1

【4】李萌,张茜,杨栋,龚旗煌,李焱. 飞秒激光加工凹陷包层波导及其应用. 激光与光电子学进展, 2020, 57(11): 111427--1

【5】王荣荣,张维彩,金峰,董贤子,刘洁,曲良体,郑美玲. 双光子聚合制备聚苯胺微结构. 中国激光, 2021, 48(2): 202006--1

【6】邵长香,赵扬,陈南,朱宏伟,王雷,孙洪波,曲良体. 激光微纳制造在传感领域中的应用. 中国激光, 2021, 48(2): 202014--1

【7】李纪超,陈招弟,韩冬冬,张永来,孙洪波. 超疏水聚偏氟乙烯的激光加工. 中国激光, 2021, 48(2): 202002--1

【8】俞嘉晨,闫剑锋,李欣,曲良体. 超快激光调控晶体形核与生长过程研究进展. 中国激光, 2021, 48(2): 202020--1

【9】陈峰,李子琦. 基于激光晶体的固态波导激光器. 中国激光, 2020, 47(5): 500008--1

【10】李春赫,马卓晨,胡昕宇,朱琳,韩冰,张永来. 微流控拉曼检测芯片的制备与应用. 中国激光, 2021, 48(2): 202010--1

【11】陈亮,刘晓东,刘静,熊政军. 飞秒激光在石英玻璃表面刻蚀微槽的研究. 光学学报, 2020, 40(23): 2314001--1

【12】邓春三,范旭浩,陶宇峰,焦玢璋,刘耘呈,曲良体,赵扬,李欣,熊伟. 基于湿度刺激响应水凝胶的飞秒激光四维打印研究. 中国激光, 2021, 48(2): 202016--1

【13】秦燕亮,黄轶,涂谱,张琦,赵茗,杨振宇. 激光直写制备完美涡旋光束微波带片. 中国激光, 2020, 47(7): 702003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF