首页 > 论文 > 激光与光电子学进展 > 56卷 > 13期(pp:131002--1)

去除鬼影及阴影的视觉背景提取运动目标检测算法

Moving Object Detection Algorithm Based on Removed Ghost and Shadow Visual Background Extractor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对视觉背景提取(Vibe)运动目标检测算法存在的鬼影及阴影问题,利用鬼影与背景相似而运动目标与背景差异大的特点,提出了一种基于前景和邻域背景像素直方图相似度匹配的方法,快速检测鬼影并更新背景模型;利用阴影的颜色特性和纹理不变性,提出在亮度和色度分离的YCbCr色彩空间中先根据颜色特性得到候选阴影区域,再利用完全局部二值模式算子(CLBP)提取区域的详细纹理特征,进一步检测与去除阴影。在公开视频数据库CDnet-2012上进行仿真,仿真结果表明,该算法能够保证运动目标被完整检测的同时快速去除鬼影和阴影,其检测精度比原Vibe算法提高了21.53%。

Abstract

Results

show that the proposed algorithm can completely detect moving objects in the sample videos while quickly removing ghosts and shadows. The proposed algorithm's detection accuracy is 21.53% higher than that of the existing Vibe algorithm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.131002

所属栏目:图像处理

基金项目:国家自然科学基金、中央高校基本科研业务费专项资金;

收稿日期:2018-11-14

修改稿日期:2019-01-24

网络出版日期:2019-07-01

作者单位    点击查看

方岚:江南大学物联网工程学院, 江苏 无锡 214122
于凤芹:江南大学物联网工程学院, 江苏 无锡 214122

联系人作者:方岚(yufq@jiangnan.edu.cn)

备注:国家自然科学基金、中央高校基本科研业务费专项资金;

【1】Barnich O and van Droogenbroeck M. ViBe: a powerful random technique to estimate the background in video sequences. [C]∥2009 IEEE International Conference on Acoustics, Speech and Signal Processing, April 19-24, 2009, Taipei, Taiwan, China. New York: IEEE. 945-948(2009).

【2】Barnich O and van Droogenbroeck M. ViBe: a universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing. 20(6), 1709-1724(2011).

【3】Mao Z C and Shen X S. Improved Vibe algorithm integrated with multiscale transformation. Laser & Optoelectronics Progress. 55(11), (2018).
茅正冲, 沈雪松. 融合多尺度变换的改进Vibe算法. 激光与光电子学进展. 55(11), (2018).

【4】Xie S R, Ye S B, Yang B H et al. Moving target detection based on improved YUV_Vibe fusion algorithm. Laser & Optoelectronics Progress. 55(11), (2018).
谢申汝, 叶生波, 杨宝华 等. 基于改进的YUV_Vibe融合算法的运动目标检测. 激光与光电子学进展. 55(11), (2018).

【5】Wang X, Liu Y and Li G Y. Moving object detection algorithm based on improved visual background extractor. Laser & Optoelectronics Progress. 56(1), (2019).
王旭, 刘毅, 李国燕. 基于改进视觉背景提取算法的运动目标检测方法. 激光与光电子学进展. 56(1), (2019).

【6】Martel-Brisson N and Zaccarin A. Moving cast shadow detection from a Gaussian mixture shadow model. [C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 20-25, 2005, San Diego, CA, USA. New York: IEEE. 643-648(2005).

【7】Yuan J J, Wu J and Cheng Y H. Shadow detecting algorithms research for moving objects base on self-adaptive background. [C]∥2019 Proceedings of International Conference on Modeling, Identification & Control, June 24-26, 2012, Wuhan, Hubei, China. New York: IEEE. 197-200(2012).

【8】Salvador E, Cavallaro A and Ebrahimi T. Cast shadow segmentation using invariant color features. Computer Vision and Image Understanding. 95(2), 238-259(2004).

【9】Deng Y L, Wu L F, Li Y T et al. An effective shadow removal approach. Signal Processing. 27(11), 1724-1728(2011).
邓亚丽, 毋立芳, 李云腾 等. 一种有效的图像阴影自动去除算法. 信号处理. 27(11), 1724-1728(2011).

【10】Yin B C, Liu Y and Wang Z F. Moving shadow detection by combining chromaticity and texture invariance. Journal of Image and Graphics. 19(6), 896-905(2014).
殷保才, 刘羽, 汪增福. 结合色度和纹理不变性的运动阴影检测. 中国图象图形学报. 19(6), 896-905(2014).

【11】Guo Z H, Zhang L and Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing. 19(6), 1657-1663(2010).

【12】Hofmann M, Tiefenbacher P and Rigoll G. Background segmentation with feedback: the pixel-based adaptive segmenter. [C]∥2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, June 16-21, 2012, Providence, RI, USA. New York: IEEE. 38-43(2012).

【13】Varghese A and Sreelekha G. Sample-based integrated background subtraction and shadow detection. IPSJ Transactions on Computer Vision and Applications. 9, (2017).

【14】Goyette N, Jodoin P M, Porikli F et al. Changedetection.net: a new change detection benchmark dataset. [C]∥2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, June 16-21, 2012, Providence, RI, USA. New York: IEEE. 1-8(2012).

【15】Sanin A, Sanderson C and Lovell B C. Improved shadow removal for robust person tracking in surveillance scenarios. [C]∥2010 20th International Conference on Pattern Recognition, August 23-26, 2010, Istanbul, Turkey. New York: IEEE. 141-144(2010).

引用该论文

Lan Fang, Fengqin Yu. Moving Object Detection Algorithm Based on Removed Ghost and Shadow Visual Background Extractor[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131002

方岚, 于凤芹. 去除鬼影及阴影的视觉背景提取运动目标检测算法[J]. 激光与光电子学进展, 2019, 56(13): 131002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF