首页 > 论文 > 激光与光电子学进展 > 56卷 > 12期(pp:121301--1)

基于锯齿共振腔耦合金属波导结构的多通道等离子体逻辑门输出光源

Multi-Channel Plasmonic Logic-Gate Output Light Source Based on Sawtooth Resonant Cavity Coupled with Metal-Waveguide Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于锯齿共振腔耦合金属波导结构。研究发现,该波导结构在加入锯齿共振腔后有更好的信号输出频率,可通过调整锯齿共振腔长度和宽度实现对逻辑门光源输出信号频率的控制;并通过增加结构中输出波导数量来增加逻辑信号的输出端口,可实现双通道及三通道逻辑信号的输出功能。该锯齿共振腔耦合金属波导结构构建的逻辑门输出光源具有较好的传输效率和较宽的工作带宽,通过调整锯齿共振腔的长宽参数,传输效率可达60%,平均工作范围为1000 nm。

Abstract

A sawtooth resonant-cavity-coupled metal-waveguide structure is proposed. It is found that adding a sawtooth resonator improves the signal output frequency of the waveguide structure. In addition, the output signal frequency of the logic-gate light source can be controlled by adjusting the length and width of the sawtooth resonator. Moreover, the increase of logic signal output ports by increasing the number of output waveguides can help to realize the two- and three-channel signal outputs. This logic gate output light source, constructed by coupling a sawtooth resonator with a metal waveguide structure, has a broad working bandwidth and a high transmission efficiency. With a suitable adjustment of the length and width of the sawtooth resonator one can get a transmission efficiency of 60% and an average working range of 1000 nm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.121301

所属栏目:集成光学

基金项目:国家自然科学基金、广西自然科学基金项目、桂林电子科技大学研究生教育创新计划资助项目、广西精密导航技术与应用重点实验室;

收稿日期:2018-12-17

修改稿日期:2019-01-09

网络出版日期:2019-06-13

作者单位    点击查看

肖功利:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
徐俊林:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
杨宏艳:桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
韦清臣:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
窦婉滢:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
杨秀华:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
张开富:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
杨寓婷:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
李海鸥:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
李琦:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
陈永和:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
傅涛:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004

联系人作者:肖功利, 杨宏艳(xgl.hy@126.com, yhy.gl@126.com)

备注:国家自然科学基金、广西自然科学基金项目、桂林电子科技大学研究生教育创新计划资助项目、广西精密导航技术与应用重点实验室;

【1】Wen J, Chen J N, Wang K et al. Broadband plasmonic logic input sources constructed with dual square ring resonators and dual waveguides. IEEE Photonics Journal. 8(2), 1-9(2016).

【2】Barnes W L, Dereux A and Ebbesen T W. Surface plasmon subwavelength optics. Nature. 424(6950), 824-830(2003).

【3】Wang X L, Wang P, Chen C C et al. Active modulation of plasmonic signal with a subwavelength metal/nonlinear dielectric material/metal structure. Chinese Optics Letters. 8(6), 584-587(2010).

【4】Li X W, Tan Q F, Bai B F et al. Tunable directional beaming assisted by asymmetrical SPP excitation in a subwavelength metallic double slit. Chinese Optics Letters. 10(5), (2012).

【5】Lal S, Link S and Halas N J. Nano-optics from sensing to waveguiding. Nature Photonics. 1(11), 641-648(2007).

【6】Maier S A, Kik P G, Atwater H A et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Materials. 2(4), 229-232(2003).

【7】Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science. 311(5758), 189-193(2006).

【8】Gramotnev D K and Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics. 4(2), 83-91(2010).

【9】Zhao H W, Huang X G and Huang J T. Surface plasmon polaritons based optical directional coupler. Science in China Series G: Physics, Mechanics and Astronomy. 51(12), (2008).

【10】Chen Y L, Xu J, Shi N N et al. Mode properties of metal-insulator-metal waveguide Bragg grating. Acta Optica Sinica. 37(11), (2017).
陈奕霖, 许吉, 时楠楠 等. 金属-介质-金属波导布拉格光栅的模式特性. 光学学报. 37(11), (2017).

【11】Wang T B, Wen X W, Yin C P et al. The transmission characteristics of surface plasmon polaritons in ring resonator. Optics Express. 17(26), 24096-24101(2009).

【12】Bozhevolnyi S I, Volkov V S, Devaux E et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 440(7083), 508-511(2006).

【13】Lin X S and Huang X G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Optics Letters. 33(23), 2874-2876(2008).

【14】Lin X S and Huang X G. Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. Journal of the Optical Society of America B. 26(7), 1263-1268(2009).

【15】Tao J, Huang X G, Lin X S et al. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Optics Express. 17(16), 13989-13994(2009).

【16】Tao J. HuangX G, Lin X S, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. Journal of the Optical Society of America B. 27(2), 323-327(2010).

【17】Yu N F, Blanchard R, Fan J et al. Quantum cascade lasers with integrated plasmonic antenna-array collimators. Optics Express. 16(24), 19447-19461(2008).

【18】Wu D Q, Huang C and Yang W F. Improvement on pH sensing properties based on surface treatment of graphene plasma. Laser & Optoelectronics Progress. 54(1), (2017).
吴冬芹, 黄翀, 杨玮枫. 基于石墨烯等离子体表面处理改善pH传感特性的研究. 激光与光电子学进展. 54(1), (2017).

【19】Yu N F, Kats M A, Pflügl C et al. Multi-beam multi-wavelength semiconductor lasers. Applied Physics Letters. 95(16), (2009).

【20】Yu N F, Wang Q J, Kats M A et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nature Materials. 9(9), 730-735(2010).

【21】Huang C, Sun W Z, Fan Y B et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate. ACS Nano. 12(4), 3865-3874(2018).

【22】Shapoval O V, Kobayashi K and Nosich A I. Electromagnetic engineering of a single-mode nanolaser on a metal plasmonic strip placed into a circular quantum wire. IEEE Journal of Selected Topics in Quantum Electronics. 23(6), 1-9(2017).

【23】Xiao G L, Liu L, Yang H Y et al. Light transmission characteristics of metal curved waveguide based on microcavity coupling structures. Acta Optica Sinica. 37(12), (2017).
肖功利, 刘利, 杨宏艳 等. 基于微腔耦合结构金属弯曲波导的光透射特性. 光学学报. 37(12), (2017).

【24】Dolatabady A and Granpayeh N. All-optical logic gates in plasmonic metal-insulator-metal nanowaveguide with slot cavity resonator. Journal of Nanophotonics. 11(2), (2017).

【25】Ferreira A C, Sobrinho C S, Guimar?es G F et al. All-optical logic gates based on XPM effect under the PAM-ASK modulation in a symmetric dual NLDC. Microsystem Technologies. 447-459(2018).

【26】Han Z H, Forsberg E and He S L. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technology Letters. 19(2), 91-93(2007).

【27】Zhai X, Wang L, Wang L L et al. Tuning bandgap of a double-tooth-shaped MIM waveguide filter by control widths of the teeth. Journal of Optics. 15(5), (2013).

【28】Kaminow I P, Mammel W L and Weber H P. Metal-clad optical waveguides: analytical and experimental study. Applied Optics. 13(2), 396-405(1974).

引用该论文

Gongli Xiao, Junlin Xu, Hongyan Yang, Qingchen Wei, Wanying Dou, Xiuhua Yang, Kaifu Zhang, Yuting Yang, Haiou Li, Qi Li, Yonghe Chen, Tao Fu. Multi-Channel Plasmonic Logic-Gate Output Light Source Based on Sawtooth Resonant Cavity Coupled with Metal-Waveguide Structure[J]. Laser & Optoelectronics Progress, 2019, 56(12): 121301

肖功利, 徐俊林, 杨宏艳, 韦清臣, 窦婉滢, 杨秀华, 张开富, 杨寓婷, 李海鸥, 李琦, 陈永和, 傅涛. 基于锯齿共振腔耦合金属波导结构的多通道等离子体逻辑门输出光源[J]. 激光与光电子学进展, 2019, 56(12): 121301

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF