首页 > 论文 > 红外与激光工程 > 49卷 > 12期(pp:20201073-20201073)

用于精密测量的低噪声激光器研究进展(特邀)

Recent development of low noise laser for precision measurement (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光精密测量的测量精度主要受限于光场噪声和各种技术噪声,在去耦合技术噪声后,光场量子噪声成为限制其测量精度的主要因素。文中针对全固态单频激光器强度噪声特性,阐述强度噪声的主要来源及其对功率噪声谱的影响,回顾了传统直流反馈控制、光学交流耦合反馈控制和量子压缩器三种强度噪声抑制技术。通过回顾相关技术的发展历程,总结了强度噪声抑制技术的当前发展水平和未来发展趋势——三种技术相结合的抑噪方案是解决高灵敏度探测的重要途径。

Abstract

The measurement accuracy of laser precision measurement is mainly limited by optical field noise and various technical noises. After the de-coupling technical noises, quantum noise becomes the main factor limiting the measurement accuracy. Based on the intensity noise characteristics of solid-state single-frequency lasers, the main sources of intensity noise and their influence on the power noise spectrum were described, and three kinds of intensity noise suppression techniques, including traditional DC feedback control, optical AC coupled feedback control and quantum squeezer, were reviewed in this paper. By reviewing the development history of relevant technologies, the current development level and future development trend of intensity noise suppression technology were summarized-the noise suppression scheme combining three technologies is an important approach to solve high sensitivity detection.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN241

DOI:10.3788/IRLA20201073

所属栏目:先进激光器技术

基金项目:国家重点研发计划(2020YFC2200402);国家自然科学基金(62027821, 11654002, 11874250, 11804207, 11804206);山西省重点研发计划(201903D111001);山西省三晋学者特聘教授项目;山西省“1331”重点建设学科和山西省高等学校中青年拔尖创新人才计划

收稿日期:2020-10-23

修改稿日期:--

网络出版日期:2021-01-14

作者单位    点击查看

王雅君:山西大学 光电研究所量子光学与光量子器件国家重点实验室,山西 太原 030006;山西大学 极端光学协同创新中心,山西 太原 030006
高丽:山西大学 光电研究所量子光学与光量子器件国家重点实验室,山西 太原 030006
张晓莉:山西大学 光电研究所量子光学与光量子器件国家重点实验室,山西 太原 030006
郑耀辉:山西大学 光电研究所量子光学与光量子器件国家重点实验室,山西 太原 030006;山西大学 极端光学协同创新中心,山西 太原 030006

联系人作者:郑耀辉

备注:王雅君(1983-),男,副教授,硕士生导师,博士,主要从事激光技术、量子器件和精密测量方面的研究。Email:YJWangsxu@sxu.edu.cn

【1】B P Abbott, R Abbott and T D Abbott. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, (2016).

【2】Gregory M Harry and LIGO Scientific Collaboration the. Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav. 27, (2010).

【3】M T Nery, L Stefan and . Fundamental limits of laser power stabilization via a radiation pressure transfer scheme. Opt. Lett. 45(14), 3969-3972(2020).

【4】Z Y Song, G B Yao and L L Zhang. Influence factors of phase noise of single frequency fiber laser. Infrared and Laser Engineering. 46(3), (2017).

【5】W Shi, S J Fu and Q Fang. Single-frequency fiber laser based on rare-earth-doped silica fiber. Infrared and Laser Engineering. 45(10), (2016).

【6】X L Bai, Q Sheng and H W Zhang. Influence of seed power and gain fiber temperature on output linewidth in single-frequency EYDFA. Infrared and Laser Engineering. 47(10), (2018).

【7】H W Zhang, Y Cao and W Shi. Experimental investigation on spectral linewidth and relative intensity noise of high-power single-frequency polarization-maintained Thulium-doped fiber amplifier. IEEE Photonics Journal. 8(3), 1-9(2016).

【8】P Q Zhang, T J Du and Y J Shi. Single-frequency laser based on single-pass QPM frequency doubling of Tm-doped fiber MOPA. Infrared and Laser Engineering. 49(7), (2020).

【9】L M Zhang, C P Yan and J J Feng. 180 W single frequency all fiber laser. Infrared and Laser Engineering. 47(11), (2008).

【10】F Thies, N Bode and P Oppermann. Nd:YVO4 high-power master oscillator power amplifier laser system for second-generation gravitational wave detectors. Opt. Lett. 44(3), 719-722(2019).

【11】Y R Guo, H D Lu and W N Peng. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate. Opt. Lett. 44(24), 6033-6036(2019).

【12】Y R Guo, M Z Xu and W N Peng. Realization of a 101 W single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction. Opt. Lett. 43(24), 6017-6020(2018).

【13】X L Wang, P Zhou and H Xiao. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration. Laser Phys. Lett. 9(8), 591-595(2012).

【14】C Dixneuf, G Guiraud and Y V Bardin. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm. Opt. Express. 28(8), 10960-10969(2020).

【15】W C Lai, P F Ma and W Liu. 550-W Single-Frequency All-Fiber Amplifier with Near-Diffraction-Limited Beam Quality. Chinese Journal of Lasers. 47(0415001), 1-3(2020).

【16】B Gouhier, G Guiraud and S Rota-Rodrigo. 25 W single-frequency, low noise fiber MOPA at 1120 nm. Opt. Lett. 43(2), 308-311(2018).

【17】J Zhao, G Guiraud and C Pierre. High-power all-fiber ultra-low noise laser. Applied Physics B. 124(114), 1-7(2018).

【18】C S Yang, S H Xu and D Chen. 52 W kHz-linewidth low-noise linearlypolarized all-fiber single-frequency MOPA laser. J. Opt. 18(055801), 1-5(2016).

【19】Yang C S, Guan X C, Xu S H, et al. 210W kHzlinewidth linearlypolarized allfiber singlefrequency MOPA laser[C]. CLEO_AT, 2018, JTu2A. 164.

【20】Q L Zhao, S H Xu and K J Zhou. Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser. Opt. Lett. 41(7), 1333-1335(2016).

【21】S P Shi, W H Yang and Y H Zheng. Noise analysis of single-frequency laser source in preparation of squeezed-state light field. Chinese Journal of Lasers. 46(7), 62-67(2019).

【22】A E Amili and M Alouini. Noise reduction in solid-state lasers using a SHG-based buffer reservoir. Opt. Lett. 40(7), 1149-1152(2015).

【23】C M CavesC M Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D. 23(8), 1693-1708(1981).

【24】H Vahlbruch, D Wilken and M Mehmet. Laser power stabilization beyond the shot noise limit using squeezed light. Phys. Rev. Lett. 121, (2018).

【25】M Tse, H C Yu and N Kijbunchoo. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, (2019).

【26】F Acernese, M Agathos and L Aiello. Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light. Phys. Rev. Lett. 123, (2019).

【27】Y H Zheng, H D Lu and F Q Li. Four watt long-term stable intracavity frequency-doubling Nd:YVO4 laser of single-frequency operation pumped by a fiber-coupled laser diode. Appl. Opt. 46(22), 5336-5339(2007).

【28】Y H Zheng, F Q Li and Y J Wang. , High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter. Opt. Commun. 283(2), 309-312(2010).

【29】Y J Wang, W H Yang and H J Zhou. Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance. Opt. Express. 21(15), 18068-18078(2013).

【30】Y J Wang, Y H Zheng and Z Shi. High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms. Laser Phys. Lett. 9(7), 1-5(2012).

【31】Y J Wang, Y H Zheng and C D Xie. High-power low-noise Nd:YAP/LBO laser with dual wavelength outputs. IEEE Journal of Quantum Electronics. 47(7), 1006-1013(2011).

【32】Y H Zheng, Y J Wang and C D Xie. Single-frequency Nd:YVO4 laser at 671 nm with high-output power of 2.8 W. IEEE Journal of Quantum Electronics. 48(1), 67-72(2012).

【33】C C Harb, T C Ralph and E H Huntington. Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source. J. Opt. Soc. Am. B. 14(11), 2752-3260(1997).

【34】J Zhang, C D Xie and K C Peng. Electronic feedback control of the intensity noise of a single-frequency intracavity-doubled laser. J. Opt. Soc. Am. B. 19(8), 1910-1916(2002).

【35】W H Yang, Y J Wang and Z X Li. Compactand low-noise intracavity frequency-doubled single-frequency Nd:YAP/KTP laser. Chinese Journal of Lasers. 41, (2014).

【36】P Kwee and B and Danzmann K Willke. New concepts and results in laser power stabilization. Applied Physics B. 102(3), 515-522(2011).

【37】Z X Li, W G Ma and W H Yang. Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation. Opt. Lett. 41(14), 3331-3334(2016).

【38】H Y Zhang, J R Wang and Q H Li. Experimental realization of high quality factor resonance detector. Journal of Quantum Optics. 25(4), 456-462(2019).

【39】C Y Chen, S P Shi and Zheng Y H and. Low-noise, transformer-coupled resonant photodetector for squeezed state generation. Rev. Sci. Instrum. 88, (2017).

【40】H J Zhou, W H Yang and Z X Li. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement. Rev. Sci. Instrum. 85, (2014).

【41】X L Jin, J Su and Y H Zheng. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt. Express. 23(18), 23859-23866(2015).

【42】J Rollins, D Ottaway and M Zucker. Solid-state laser intensity stabilization at the 10-8 level. Opt. Lett. 29(16), 1876-1878(2004).

【43】F Seifert, P Kwee and M Heurs. Laser power stabilization for second-generation gravitational wave detectors. Opt. Lett. 31(13), 2000-2002(2006).

【44】P Kwee, B Willke and Danzmann K and. Shot-noise-limited laser power stabilization with a high-power photodiode array. Opt. Lett. 34(19), 2912-2914(2009).

【45】J Junker, P Oppermann and Willke B and. Shot-noise-limited laser power stabilization for the AEI 10 m prototype interferometer. Opt. Lett. 42(4), 755-758(2017).

【46】P Kwee, B Willke and Danzmann K and. Optical ac coupling to overcome limitations in the detection of optical power fluctuations. Opt. Lett. 33(13), 1509-1511(2008).

【47】P Kwee, B Willke and Danzmann K and. Laser power noise detection at the quantum-noise limit of 32A photocurrent. Opt. Lett. 36(18), 3563-3565(2011).

【48】S Kaufer and Willke B and. Optical AC coupling power stabilization at frequencies close to the gravitational wave detection band. Opt. Lett. 44(8), 1916-1919(2019).

【49】Steinlechner S, Quantum metrology with squeezed entangled light f the detection of gravitational waves[D]. Germany: Leibniz Universit?t Hannover, 2013.

【50】J Bauchrowitz and Tand Schnabel R Westphal. A graphical description of optical parametric generation of squeezed states of light. Am. J. Phys. 81(10), 767-771(2013).

【51】R SchnabelR Schnabel. Squeezed states of light and their applications in laser interferometers. Physics Reports. 684(24), 1-51(2017).

【52】S S Y Chua, B J J Slagmolen and D A Shaddock. Quantum squeezed light in gravitational-wave detectors. Class. Quantum Grav. 31, (2014).

【53】L A Wu, H J Kimble and J L Hall. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57(20), 2520-2523(1986).

【54】Y Yamamoto, N Imoto and Machida S and. Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback. Phys. Rev. A. 33(5), 3243-3261(1986).

【55】A Heidmann, R J Horowicz and S Reynaud. Observation of quantum noise reduction on twin laser beams. Phys. Rev. Lett. 59(22), 2555-2557(1987).

【56】Z Y Ou, S F Pereira and H J Kimble. Realization of the einstein-podolsky-rosen paradox for continuous variables. Phys. Rev. Lett. 68(25), 3663-3666(1992).

【57】K Schneider, M Lang and J Mlynek. Generation of strongly squeezed continuous-wave light at 1064 nm. Opt. Express. 2(3), 59-64(1998).

【58】K McKenzie, N Grosse and W P Bowen. Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett. 93, (2004).

【59】H Vahlbruch, S Chelkowski and B Hage. Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett. 97, (2006).

【60】H Vahlbruch, S Chelkowski and K Danzmann. Quantum engineering of squeezed states for quantum communication and metrology. New J. Phys. 9(10), 12505-12508(2007).

【61】Y Takeno, M Yukawa and H Yonezawa. Observation of ?9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express. 15(7), 4321-4327(2007).

【62】H Vahlbruch, M Mehmet and S Chelkowski. Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 100, (2008).

【63】T Eberle, S Steinlechner and J Bauchrowitz. Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, (2010).

【64】H Vahlbruch, A Khalaidovski and N Lastzka. The GEO 600 squeezed light source. Class. Quantum Grav. 27, (2010).

【65】J Abadie, B Abbott and R Abbott. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys. 7(12), 962-965(2011).

【66】M S Stefszky, C M Mow-Lowry and S S Y Chua. Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quantum Grav. 29, (2012).

【67】T Eberle, V Handchen and R Schnabel. Stable control of 10 dB two-mode squeezed vacuum states of light. Opt. Express. 21(9), 11546-11553(2013).

【68】H Vahlbruch, M Mehmet and K Danzmann. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, (2016).

【69】K C Peng, Q Pan and H Wang. Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a cw-NOPO. Appl. Phys. B. 66(6), 755-758(1998).

【70】H Wang, Y Zhang and Q Pan. Experimental realization of a quantum measurement for intensity difference fluctuation using a beam splitter. Phys. Rev. Lett. 82(7), 1414-1417(1999).

【71】Y Wang, H Shen and X L Jin. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier. Opt. Express. 18(6), 6149-6155(2010).

【72】W H Yang, S P Shi and Y J Wang. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt. Lett. 42(21), 4553-4556(2017).

【73】W H Yang, X L Jin and X D Yu. Dependence of measured audio-band squeezing level on local oscillator intensity noise. Opt. Express. 25(20), 24262-24271(2017).

【74】S P Shi, Y J Wang and W H Yang. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption.. Opt. Lett. 43(21), 5411-5414(2018).

【75】W H Zhang, J R Wang and Y H Zheng. Optimization of the squeezing factor by temperature-dependent phase shift compensation in a doubly resonant optical parametric oscillator. Appl. Phys. Lett. 115, (2019).

【76】X C Sun, Y J Wang and L Tian. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection. Chinese Opt. Lett. 17, (2019).

【77】S P Shi, Y J Wang and L Tian. Observation of a comb of squeezed states with a strong squeezing factor by a bichromatic local oscillator. Opt. Lett. 45(8), 2419-2422(2020).

【78】S P Shi, L Tian and Y J Wang. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett. 125, (2020).

引用该论文

Yajun Wang,Li Gao,Xiaoli Zhang,Yaohui Zheng. Recent development of low noise laser for precision measurement (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201073-20201073

王雅君,高丽,张晓莉,郑耀辉. 用于精密测量的低噪声激光器研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201073-20201073

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF