首页 > 论文 > Photonics Research > 8卷 > 7期(pp:1226-1235)

Plasmonic resonance-linewidth shrinkage to boost biosensing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Coupling effects of surface plasmon resonance (SPR) induce changes in the wavelength, intensity, and linewidth of plasmonic modes. Here, inspired by coupling effects, we reveal an abrupt linewidth-shrinking effect in 2D gold nanohole arrays at the azimuthal angle of 45° arising from the interference of two degenerate SPR modes. We further demonstrate the biosensing capability under various excitation conditions for detecting the critical molecular biomarker of prostatic carcinoma, and achieve the maximum sensitivity at this angle. Our study not only enhances the understanding toward plasmonic resonance-linewidth shrinking, but also provides a promising strategy to greatly improve biosensing performance by light manipulation on plasmonic nanostructures.

中国激光微信矩阵
补充资料

DOI:10.1364/PRJ.390343

所属栏目:Surface Optics and Plasmonics

基金项目:National Natural Science Foundation of China10.13039/501100001809; NSAF Joint Fund10.13039/501100010906; Ministry of Science and Technology of the People’s Republic of China10.13039/501100002855; Natural Science Foundation of Jiangxi Province10.13039/501100004479; Fundamental Research Funds for the Central Universities10.13039/501100012226;

收稿日期:2020-02-12

录用日期:2020-05-25

网络出版日期:2020-05-26

作者单位    点击查看

Min Gao:Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China;Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China;College of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
Weimin Yang:Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
Zhengying Wang:Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China
Shaowei Lin:The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
Jinfeng Zhu:Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China;e-mail: nanoantenna@hotmail.com
Zhilin Yang:Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China;e-mail: zlyang@xmu.edu.cn

联系人作者:Jinfeng Zhu(nanoantenna@hotmail.com); Zhilin Yang(zlyang@xmu.edu.cn);

备注:National Natural Science Foundation of China10.13039/501100001809; NSAF Joint Fund10.13039/501100010906; Ministry of Science and Technology of the People’s Republic of China10.13039/501100002855; Natural Science Foundation of Jiangxi Province10.13039/501100004479; Fundamental Research Funds for the Central Universities10.13039/501100012226;

【1】M. MoskovitsM. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783-826(1985).

【2】S. A. MaierS. A. Maier. Plasmonics: Fundamentals and Applications. : Springer, (2007).

【3】S. I. Azzam, V. M. Shalaev, A. Boltasseva and A. V. Kildishev. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett. 121, (2018).

【4】X. Tian and Z.-Y. Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon. Res. 4, 146-152(2016).

【5】L. Meng and M. Sun. Tip-enhanced photoluminescence spectroscopy of monolayer MoS2. Photon. Res. 5, 745-749(2017).

【6】J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim and J. Guo. Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photon. 5, 776-781(2018).

【7】L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander and N. J. Halas. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science. 362, 69-72(2018).

【8】J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian and J. F. Li. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy. 4, 60-67(2019).

【9】J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li and Q. H. Liu. Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics. Nanophotonics. 8, 307-316(2019).

【10】J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu and S. Guo. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron. 150, (2020).

【11】L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas and J. L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA. 100, 13549-13554(2003).

【12】H. A. Atwater and A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205-213(2010).

【13】M. W. Knight, H. Sobhani, P. Nordlander and N. J. Halas. Photodetection with active optical antennas. Science. 332, 702-704(2011).

【14】K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca and G. Strangi. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621-627(2016).

【15】Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin and J. F. Wang. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 4, (2013).

【16】C. ClaveroC. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics. 8, 95-103(2014).

【17】D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong and S. A. Maier. Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays. ACS Nano. 4, 432-438(2010).

【18】B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang and B. Ren. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv. Mater. 30, (2018).

【19】J. Guo, Z. Li and H. Guo. Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing. Opt. Express. 24, 17259-17271(2016).

【20】A. Dmitriev, C. H?gglund, S. Chen, H. Fredriksson, T. Pakizeh, M. K?ll and D. S. Sutherland. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett. 8, 3893-3898(2008).

【21】N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang and B. Gu. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 10, 4952-4955(2010).

【22】F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar and H. Altug. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics. 13, 390-396(2019).

【23】J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442-453(2008).

【24】D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri and F. De Angelis. Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horiz. 4, 1153-1157(2019).

【25】V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin and A. N. Grigorenko. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12, 304-309(2013).

【26】S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang and J.-B. Han. Polarization state-based refractive index sensing with plasmonic nanostructures. Nanoscale. 7, 20171-20179(2015).

【27】R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo L?nk, A. Dmitriev, P. Vavassori, I. V. Shvets and M. K?ll. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. Nanoscale. 8, 10576-10581(2016).

【28】H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee and P. Fischer. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun. 7, (2016).

【29】N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. ?kerman, M. Knez and P. Vavassori. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun. 6, (2015).

【30】B. Caballero, A. García-Martín and J. C. Cuevas. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photon. 3, 203-208(2016).

【31】A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk and B. N. Chichkov. Optical response features of Si-nanoparticle arrays. Phys. Rev. B. 82, (2010).

【32】J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa and Q. H. Gong. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat. Commun. 9, (2018).

【33】R. Ameling and H. Giessen. Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett. 10, 4394-4398(2010).

【34】S. Malynych and G. Chumanov. Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J. Am. Chem. Soc. 125, 2896-2898(2003).

【35】Y. Hua, A. K. Fumani and T. W. Odom. Tunable lattice plasmon resonances in 1D nanogratings. ACS Photon. 6, 322-326(2019).

【36】D. Wang, W. Wang, M. P. Knudson, G. C. Schatz and T. W. Odom. Structural engineering in plasmon nanolasers. Chem. Rev. 118, 2865-2881(2018).

【37】W. L. Barnes, T. W. Preist, S. C. Kitson and J. R. Sambles. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B. 54, 6227-6244(1996).

【38】W. L. Barnes, A. Dereux and T. W. Ebbesen. Surface plasmon subwavelength optics. Nature. 424, 824-830(2003).

【39】Z. L. Cao and H. C. Ong. Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array. Opt. Express. 24, 12489-12500(2016).

【40】Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan and H. C. Ong. Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion. Phys. Rev. B. 95, (2017).

【41】Z. L. Cao and H. C. Ong. Study of the momentum-resolved plasmonic field energy of Bloch-like surface plasmon polaritons from periodic nanohole array. Opt. Express. 25, 30626-30635(2017).

【42】M. Lin, Z. L. Cao and H. C. Ong. Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons. Opt. Express. 25, 6092-6103(2017).

【43】M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen and Z. Yang. Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays. Nanoscale. 11, 16428-16436(2019).

【44】C. Genet and T. W. Ebbesen. Light in tiny holes. Nature. 445, 39-46(2007).

【45】H. W. Gao, W. Zhou and T. W. Odom. Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library. Adv. Funct. Mater. 20, 529-539(2010).

【46】D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park and C. Lienau. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, (2003).

【47】J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen and Q. H. Liu. Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials. Nanophotonics. 9, 167-176(2020).

【48】J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian and Z. Yang. An ultranarrow SPR linewidth in the UV region for plasmonic sensing. Nanoscale. 11, 4061-4066(2019).

【49】M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang and Z. Wang. Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes. Nanophotonics. 9, 815-822(2020).

【50】A. B. DahlinA. B. Dahlin. Sensing applications based on plasmonic nanopores: the hole story. Analyst. 140, 4748-4759(2015).

【51】D. Garoli, H. Yamazaki, N. Maccaferri and M. Wanunu. Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications. Nano Lett. 19, 7553-7562(2019).

【52】P. B. JohnsonP. B. Johnson. Optical constants of the noble metals. Phys. Rev. B. 6, 4370-4379(1972).

【53】C. Zhao, J. Chen, H. Li, T. Li and S. Zhu. Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes. Chin. Opt. Lett. 16, (2018).

【54】F. Gan, C. Sun, H. Li, Q. Gong and J. Chen. On-chip polarization splitter based on a multimode plasmonic waveguide. Photon. Res. 6, 47-53(2018).

引用该论文

Min Gao, Weimin Yang, Zhengying Wang, Shaowei Lin, Jinfeng Zhu, and Zhilin Yang, "Plasmonic resonance-linewidth shrinkage to boost biosensing," Photonics Research 8(7), 1226-1235 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF