首页 > 论文 > 激光与光电子学进展 > 57卷 > 17期(pp:170005--1)

光热转换纳米材料在肿瘤光热治疗中的应用

Application of Photothermal Conversion Nanomaterials in Tumor Photothermal Therapy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

癌症治疗一直是现代医学界最大的难题之一。因为放疗和化疗会带来一定的副作用,因此,通过静脉注射光热剂使其在肿瘤组织中积累,进而在近红外光照射下产生足够的热量来消融实体肿瘤的光热治疗法引起了研究人员的广泛关注。该方法由于具有照射光易聚焦和调整的特性而使得局部治疗过程能够以非侵入、直接和精准的方式进行。这篇综述首先归纳了近年来基于光热转换纳米材料的光热剂在消融实体肿瘤研究方面的主要进展,然后总结了提高光热治疗效果的不同策略,最后讨论了基于光热转换纳米材料的肿瘤光热治疗在临床应用方面面临的局限性和挑战。

Abstract

Curing cancer has been one of the greatest conundrums in the modern medical field. Because of side-effects associated with radiotherapy and chemotherapy, photothermal therapy ( PTT) utilizing photothermal therapeutic agents (PTA)—accumulate in tumor tissues by intravenous injection—to further generate sufficient heat under near-infrared (NIR) light irradiation for solid tumor ablation has attracted extensive attention of researchers. The method allows the local treatment process to be performed in a non-invasive direct and accurate manner due to the easy focusing and tunable properties of the incident light. In this review, we first summarize the major advances in PTA based on photothermal conversion nanomaterials in the study of ablation of solid tumors in recent years. Second, we summarize the different strategies to improve therapeutic efficacy. Finally, the limitations and challenges in the clinical application of photothermal tumor therapy based on photothermal conversion nanomaterials are discussed.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TB34; R730.57

DOI:10.3788/LOP57.170005

所属栏目:综述

基金项目:国家自然科学基金、陕西省自然科学基金、陕西省教育厅专项科研计划、陕西中医药大学创新团队项目、陕西中医药大学学科建设项目;

收稿日期:2020-02-28

修改稿日期:2020-04-03

网络出版日期:2020-09-01

作者单位    点击查看

李治:陕西中医药大学药学院基础化学教研室, 陕西 西安 712046
千维娜:陕西中医药大学附属医院肿瘤科, 陕西 咸阳 712000
魏思敏:陕西中医药大学协同创新中心, 陕西 西安 712046
闫浩:陕西中医药大学药学院基础化学教研室, 陕西 西安 712046
靳如意:陕西中医药大学药学院基础化学教研室, 陕西 西安 712046
郭惠:陕西中医药大学药学院基础化学教研室, 陕西 西安 712046陕西中医药大学协同创新中心, 陕西 西安 712046

联系人作者:郭惠(guohui20032476@163.com)

备注:国家自然科学基金、陕西省自然科学基金、陕西省教育厅专项科研计划、陕西中医药大学创新团队项目、陕西中医药大学学科建设项目;

【1】Word Healthy Organization. Cancer [2020-02-20].http:∥www.who.int/mediacentre/factsheets/fs297/en/.[2020-02-20]. 0.

【2】Goldman L. Laser cancer research [M]. Berlin: Springer. 1966.

【3】Liu Y J, Bhattarai P, Dai Z F, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer [J]. Chemical Society Reviews. 2019, 48(7): 2053-2108.

【4】Shi J J, Kantoff P W, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities [J]. Nature Reviews Cancer. 2017, 17(1): 20-37.

【5】Cai Y, Wei Z, Song C H, et al. Optical nano-agents in the second near-infrared window for biomedical applications [J]. Chemical Society Reviews. 2019, 48(1): 22-37.

【6】Ge X G, Fu Q R, Bai L, et al. Photoacoustic imaging and photothermal therapy in the second near-infrared window [J]. New Journal of Chemistry. 2019, 43(23): 8835-8851.

【7】Gai S L, Yang G X, Yang P P, et al. Recent advances in functional nanomaterials for light-triggered cancer therapy [J]. Nano Today. 2018, 19: 146-187.

【8】Abadeer N S, Murphy C J. Recent progress in cancer thermal therapy using gold nanoparticles [J]. The Journal of Physical Chemistry C. 2016, 120(9): 4691-4716.

【9】Dong L Y, Li Y C, Li Z, et al. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors [J]. ACS Applied Materials & Interfaces. 2018, 10(11): 9247-9256.

【10】Hou G H, Qian J M, Xu W J, et al. A novel pH-sensitive targeting polysaccharide-gold nanorod conjugate for combined photothermal-chemotherapy of breast cancer [J]. Carbohydrate Polymers. 2019, 212: 334-344.

【11】Zhang Y Y, Li J C, Jiang H, et al. Rapid tumor bioimaging and photothermal treatment based on GSH-capped red fluorescent gold nanoclusters [J]. RSC Advances. 2016, 6(68): 63331-63337.

【12】Bian K X, Zhang X W, Yang M X, et al. Dual-template cascade synthesis of highly multi-branched Au nanoshells with ultrastrong NIR absorption and efficient photothermal therapeutic intervention [J]. Journal of Materials Chemistry B. 2019, 7(4): 598-610.

【13】Liu Y J, Wang Z T, Liu Y, et al. Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors [J]. ACS Nano. 2017, 11(10): 10539-10548.

【14】Yin T, Li Y J, Bian K X, et al. Self-assembly synthesis of vapreotide-gold hybrid nanoflower for photothermal antitumor activity [J]. Materials Science and Engineering C. 2018, 93: 716-723.

【15】González-Rubio G, Díaz-Núnez P, Rivera A, et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances [J]. Science. 2017, 358(6363): 640-644.

【16】Huang X Q, Tang S H, Mu X L, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties [J]. Nature Nanotechnology. 2011, 6(1): 28-32.

【17】Tang S H, Chen M, Zheng N F. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy [J]. Small. 2014, 10(15): 3139-3144.

【18】Zhu X M, Wan H Y, Jia H L, et al. Porous Pt nanoparticles with high near-infrared photothermal conversion efficiencies for photothermal therapy [J]. Advanced Healthcare Materials. 2016, 5(24): 3165-3172.

【19】Dumas A, Couvreur P. Palladium: a future key player in the nanomedical field? [J]. Chemical Science. 2015, 6(4): 2153-2157.

【20】Augustine S, Singh J, Srivastava M, et al. Recent advances in carbon based nanosystems for cancer theranostics [J]. Biomaterials Science. 2017, 5(5): 901-952.

【21】Tan C L, Cao X H, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical Reviews. 2017, 117(9): 6225-6331.

【22】Gu Z J, Zhu S, Yan L, et al. Graphene-based smart platforms for combined cancer therapy [J]. Advanced Materials. 2019, 31(9): 1800662.

【23】Sinha M, Gollavelli G, Ling Y. Exploring the photothermal hot spots of graphene in the first and second biological window to inactivate cancer cells and pathogens [J]. RSC Advances. 2016, 6(68): 63859-63866.

【24】Sobhani Z, Behnam M A, Emami F, et al. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes [J]. International Journal of Nanomedicine. 2017, 12: 4509-4517.

【25】Xu Y H, Shan Y L, Cong H L, et al. Advanced carbon-based nanoplatforms combining drug delivery and thermal therapy for cancer treatment [J]. Current Pharmaceutical Design. 2019, 24(34): 4060-4076.

【26】Zhao W, Li A H, Zhang A T, et al. Recent advances in functional-polymer-decorated transition-metal nanomaterials for bioimaging and cancer therapy [J]. ChemMedChem. 2018, 13(20): 2134-2149.

【27】Chen Y, Wang L Z, Shi J L. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy [J]. Nano Today. 2016, 11(3): 292-308.

【28】Gong L J, Yan L, Zhou R Y, et al. Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy [J]. Journal of Materials Chemistry B. 2017, 5(10): 1873-1895.

【29】Yan C L, Tian Q W, Yang S P. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells [J]. RSC Advances. 2017, 7(60): 37887-37897.

【30】Zhang S H, Sun C X, Zeng J F, et al. Ambient aqueous synthesis of ultrasmall PEGylated Cu2-x Se nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer [J]. Advanced Materials. 2016, 28(40): 8927-8936.

【31】Zhou M, Zhang R, Huang M, et al. A chelator-free multifunctional [ 64Cu]-CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy [J]. Journal of the American Chemical Society. 2010, 132(43): 15351-15358.

【32】Ding X G, Fu D D, Kuang Y, et al. Seeded growth of Cu2-xSe nanocrystals and their size-dependent phototherapeutic effect [J]. ACS Applied Nano Materials. 2018, 1(7): 3303-3311.

【33】Ariyasu S, Mu J, Zhang X, et al. Investigation of thermally induced cellular ablation and heat response triggered by planar MoS2-based nanocomposite [J]. Bioconjugate Chemistry. 2017, 28(4): 1059-1067.

【34】Zhang X Y, Wu J R, Williams G R, et al. Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy [J]. Journal of Colloid and Interface Science. 2019, 539: 433-441.

【35】Liu T, Liu Z. 2D MoS2 nanostructures for biomedical applications [J]. Advanced Healthcare Materials. 2018, 7(8): e1701158.

【36】Wang S G, Li K, Chen Y, et al. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor [J]. Biomaterials. 2015, 39: 206-217.

【37】Liu T, Shi S X, Liang C, et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radio labeling and multimodal imaging guided photothermal therapy [J]. ACS Nano. 2015, 9(1): 950-960.

【38】Liu T, Chao Y, Gao M, et al. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy [J]. Nano Research. 2016, 9(10): 3003-3017.

【39】Yang H L, Zhao J L, Wu C Y, et al. Facile synthesis of colloidal stable MoS2 nanoparticles for combined tumor therapy [J]. Chemical Engineering Journal. 2018, 351: 548-558.

【40】Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials. 2011, 23(37): 4248-4253.

【41】Lin H, Wang X G, Yu L D, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion [J]. Nano Letters. 2017, 17(1): 384-391.

【42】Yu X H, Cai X K, Cui H D, et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy [J]. Nanoscale. 2017, 9(45): 17859-17864.

【43】Xuan J N, Wang Z Q, Chen Y Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance [J]. Angewandte Chemie. 2016, 128(47): 14789-14794.

【44】Lin H, Wang Y W, Gao S S, et al. Theranostic 2D tantalum carbide (MXene) [J]. Advanced Materials. 2018, 30(4): 1703284.

【45】Lin H, Gao S S, Dai C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows [J]. Journal of the American Chemical Society. 2017, 139(45): 16235-16247.

【46】Yang X Y, Liu G Y, Shi Y H, et al. Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects [J]. Nanotechnology. 2018, 29(22): 222001.

【47】Choi J R, Yong K W, Choi J Y, et al. Black phosphorus and its biomedical applications [J]. Theranostics. 2018, 8(4): 1005-1026.

【48】Qian X Q, Gu Z, Chen Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine [J]. Materials Horizons. 2017, 4(5): 800-816.

【49】Yang X Y, Wang D Y, Shi Y H, et al. Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy [J]. ACS Applied Materials & Interfaces. 2018, 10(15): 12431-12440.

【50】Zeng X W, Luo M M, Liu G, et al. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments [J]. Advanced Science. 2018, 5(10): 1800510.

【51】Cheng H B, Cui Y X, Wang R, et al. The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy [J]. Coordination Chemistry Reviews. 2019, 392: 237-254.

【52】Jung H S, Verwilst P, Sharma A, et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe [J]. Chemical Society Reviews. 2018, 47(7): 2280-2297.

【53】Chen R, Wang J J, Qiao H Z, et al. Organic photothermal conversion materials and their application in photothermal therapy [J]. Progress in Chemistry. 2017, 29(2/3): 329-336.

【54】Han Y H, Kankala R K, Wang S B, et al. Leveraging engineering of indocyanine green-encapsulated polymeric nanocomposites for biomedical applications [J]. Nanomaterials. 2018, 8(6): 360.

【55】Bhattarai P, Dai Z F. Cyanine based nanoprobes for cancer theranostics [J]. Advanced Healthcare Materials. 2017, 6(14): 1700262.

【56】Sheng Z H, Hu D H, Xue M M, et al. Indocyanine green nanoparticles for theranostic applications [J]. Nano-Micro Letters. 2013, 5(3): 145-150.

【57】Yoon H J, Lee H S, Lim J Y, et al. Liposomal indocyanine green for enhanced photothermal therapy [J]. ACS Applied Materials & Interfaces. 2017, 9(7): 5683-5691.

【58】Pan G Y, Jia H R, Zhu Y X, et al. Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy [J]. Nanoscale. 2018, 10(4): 2115-2127.

【59】Luo H H, Wang Q L, Deng Y B, et al. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy [J]. Advanced Functional Materials. 2017, 27(39): 1702834.

【60】Zhou Y M, Liang X L, Dai Z F. Porphyrin-loaded nanoparticles for cancer theranostics [J]. Nanoscale. 2016, 8(25): 12394-12405.

【61】Zhao L Y, Liu Y M, Chang R, et al. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy [J]. Advanced Functional Materials. 2019, 29(4): 1806877.

【62】Lovell J F, Jin C S, Huynh E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents [J]. Nature Materials. 2011, 10(4): 324-332.

【63】MacLaughlin C M, Ding L L, Jin C, et al. Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study [J]. Journal of Biomedical Optics. 2016, 21(8): 84002.

【64】Li X S, Kim C, Lee S A, et al. Nanostructured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy [J]. Journal of the American Chemical Society. 2017, 139(31): 10880-10886.

【65】He H, Ji S S, He Y, et al. Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy [J]. Advanced Materials. 2017, 29(19): 1606690.

【66】Chen Q, Liu X D, Zeng J F, et al. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors [J]. Biomaterials. 2016, 98: 23-30.

【67】Vines J B, Lim D, Park H. Contemporary polymer-based nanoparticle systems for photothermal therapy [J]. Polymers. 2018, 10(12): 1357.

【68】Jiang Y Y, Pu K Y. Multimodal biophotonics of semiconducting polymer nanoparticles [J]. Accounts of Chemical Research. 2018, 51(8): 1840-1849.

【69】Yang J, Choi J, Bang D, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells [J]. Angewandte Chemie International Edition. 2011, 50(2): 441-444.

【70】Wang J P, Guo F, Yu M, et al. Rapamycin/DiR loaded lipid-polyaniline nanoparticles for dual-modal imaging guided enhanced photothermal and antiangiogenic combination therapy [J]. Journal of Controlled Release. 2016, 237: 23-34.

【71】Cheng L, Yang K, Chen Q, et al. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer [J]. ACS Nano. 2012, 6(6): 5605-5613.

【72】Yang K, Xu H, Cheng L, et al. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles [J]. Advanced Materials. 2012, 24(41): 5586-5592.

【73】Wang Z, Duan Y O, Duan Y W. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior [J]. Journal of Controlled Release. 2018, 290: 56-74.

【74】Cai Y, Liang P P, Tang Q Y, et al. Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy [J]. ACS Nano. 2017, 11(1): 1054-1063.

【75】Lyu Y, Zeng J F, Jiang Y Y, et al. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy [J]. ACS Nano. 2018, 12(2): 1801-1810.

【76】Wilhelm S, Tavares A J, Dai Q, et al. Analysis of nanoparticle delivery to tumours [J]. Nature Reviews Materials. 2016, 1(5): 16014.

【77】Vankayala R, Hwang K C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment [J]. Advanced Materials. 2018, 30(23): 1706320.

【78】Walkey C D, Olsen J B, Guo H B, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake [J]. Journal of the American Chemical Society. 2012, 134(4): 2139-2147.

【79】Hou J, Du Y, Zhang T, et al. PEGylated (NH4)xWO3 nanorod mediated rapid photonecrosis of breast cancer cells [J]. Nanoscale. 2019, 11(21): 10209-10219.

【80】Xie W S, Gao Q, Wang D, et al. Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer [J]. Nano Research. 2018, 11(5): 2470-2487.

【81】Chen D P, Tang Q Y, Zou J H, et al. pH-responsive PEG-doxorubicin-encapsulated aza-BODIPY nanotheranostic agent for imaging-guided synergistic cancer therapy [J]. Advanced Healthcare Materials. 2018, 7(7): 1701272.

【82】Khunsuk P O, Chawalitpong S, Sawutdeechaikul P, et al. Gold nanorods stabilized by biocompatible and multifunctional zwitterionic copolymer for synergistic cancer therapy [J]. Molecular Pharmaceutics. 2018, 15(1): 164-174.

【83】Jiang H Y, Chen D, Guo D B, et al. Zwitterionic gold nanorods: low toxicity and high photothermal efficacy for cancer therapy [J]. Biomaterials Science. 2017, 5(4): 686-697.

【84】Deng W X, Wu Q, Sun P F, et al. Zwitterionic diketopyrrolopyrrole for fluorescence/photoacoustic imaging guided photodynamic/photothermal therapy [J]. Polymer Chemistry. 2018, 9(20): 2805-2812.

【85】Blanco E, Shen H F, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery [J]. Nature Biotechnology. 2015, 33(9): 941-951.

【86】Ban Q F, Bai T, Duan X, et al. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers [J]. Biomaterials Science. 2017, 5(2): 190-210.

【87】Hu C M J, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform [J]. PNAS. 2011, 108(27): 10980-10985.

【88】Hu C J, Fang R H, Wang K, et al. Nanoparticle biointerfacing by platelet membrane cloaking [J]. Nature. 2015, 526(7571): 118-121.

【89】Zhang N, Li M H, Sun X T, et al. NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery [J]. Biomaterials. 2018, 159: 25-36.

【90】Meng Q F, Rao L, Zan M H, et al. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy [J]. Nanotechnology. 2018, 29(13): 134004.

【91】Zhu D M, Xie W, Xiao Y S, et al. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy [J]. Nanotechnology. 2018, 29(8): 084002.

【92】Zhen X, Cheng P H, Pu K Y. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy [J]. Small. 2019, 15(1): 1804105.

【93】Pan L M, Liu J N, Shi J L. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics [J]. Chemical Society Reviews. 2018, 47(18): 6930-6946.

【94】Ma Z Y, Han K, Dai X X, et al. Precisely striking tumors without adjacent normal tissue damage via mitochondria-templated accumulation [J]. ACS Nano. 2018, 12(6): 6252-6262.

【95】Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems [J]. Chemical Society Reviews. 2016, 45(5): 1457-1501.

【96】Ju E G, Dong K, Liu Z, et al. Tumor microenvironment activated photothermal strategy for precisely controlled ablation of solid tumors upon NIR irradiation [J]. Advanced Functional Materials. 2015, 25(10): 1574-1580.

【97】Xue F F, Wen Y, Wei P, et al. A smart drug: a pH-responsive photothermal ablation agent for Golgi apparatus activated cancer therapy [J]. Chemical Communications. 2017, 53(48): 6424-6427.

【98】Tang Q Y, Xiao W Y, Huang C H, et al. pH-triggered and enhanced simultaneous photodynamic and photothermal therapy guided by photoacoustic and photothermal imaging [J]. Chemistry of Materials. 2017, 29(12): 5216-5224.

【99】Ni D L, Jiang D W, Valdovinos H F, et al. Bioresponsive polyoxometalate cluster for redox-activated photoacoustic imaging-guided photothermal cancer therapy [J]. Nano Letters. 2017, 17(5): 3282-3289.

【100】Gong F, Cheng L, Yang N L, et al. Bimetallic oxide MnMoOx nanorods for in vivo photoacoustic imaging of GSH and tumor-specific photothermal therapy [J]. Nano Letters. 2018, 18(9): 6037-6044.

【101】Gao H B, Fang X M, Xiang J, et al. Development of tungsten bronze nanorods for redox-enhanced photoacoustic imaging-guided photothermal therapy of tumors [J]. RSC Advances. 2018, 8(47): 26713-26719.

【102】Chen Q, Liang C, Sun X Q, et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay [J]. PNAS. 2017, 114(21): 5343-5348.

【103】Zhen X, Zhang J J, Huang J G, et al. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy [J]. Angewandte Chemie International Edition. 2018, 57(26): 7804-7808.

【104】Zhou J J, Jiang Y Y, Hou S, et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window [J]. ACS Nano. 2018, 12(3): 2643-2651.

【105】Han X X, Huang J, Jing X X, et al. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow [J]. ACS Nano. 2018, 12(5): 4545-4555.

【106】Guo B, Sheng Z H, Hu D H, et al. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance [J]. Advanced Materials. 2018, 30(35): 1802591.

【107】Jiang Y Y, Li J C, Zhen X, et al. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study [J]. Advanced Materials. 2018, 30(14): 1705980.

【108】de Melo-Diogo D, Pais-Silva C, Dias D R, et al. Strategies to improve cancer photothermal therapy mediated by nanomaterials [J]. Advanced Healthcare Materials. 2017, 6(10): 1700073.

【109】Xu W J, Meng Z Q, Yu N, et al. PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells [J]. RSC Advances. 2015, 5(10): 7074-7082.

【110】Sharker S M, Kim S M, Lee J E, et al. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy [J]. Journal of Controlled Release. 2015, 217: 211-220.

【111】Zhang B, Wang H F, Shen S, et al. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor [J]. Biomaterials. 2016, 79: 46-55.

引用该论文

Li Zhi,Qian Weina,Wei Simin,Yan Hao,Jin Ruyi,Guo Hui. Application of Photothermal Conversion Nanomaterials in Tumor Photothermal Therapy[J]. Laser & Optoelectronics Progress, 2020, 57(17): 170005

李治,千维娜,魏思敏,闫浩,靳如意,郭惠. 光热转换纳米材料在肿瘤光热治疗中的应用[J]. 激光与光电子学进展, 2020, 57(17): 170005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF