首页 > 论文 > 中国激光 > 46卷 > 12期(pp:1204002--1)

基于法布里-珀罗标准具的亚微米级位移测量方法

Submicron Displacement Measurement Method Based on Fabry-Perot Etalon

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

受限于面阵像元尺寸和细分技术,利用面阵器件进行长度测量难以达到亚微米级。提出了一种基于法布里-珀罗(F-P)标准具多光束干涉成像原理的二维亚微米级位移测量方法,通过计算同心干涉圆环圆心坐标变化量得到焦平面内的二维微位移。采用虚拟面阵像元细分和峰位坐标局域细分技术等处理面阵海量信息,减小未定系统误差影响,实现同心干涉圆环圆心坐标的准确求取。实验采用间隔约为2 mm的F-P标准具、焦距约为50 mm的光学透镜,对焦平面内不同位置处的成像同心干涉圆环圆心进行计算,测量范围基本可达到3 mm。实验采用激光相调差动干涉仪进行位移比对测量,在34 μm量程范围内,测量结果的直线拟合标准差为0.0154w″(w″为相对像元间隔),包含因子为2.45时扩展不确定度为0.036w″,验证了该测量方法的准确性。

Abstract

When a length is measured using a plane array device, reaching submicron-level accuracy is difficult because of the limitation imposed by the pixel size of the plane array device and subdivision technique. Therefore, we propose a method for measuring two-dimensional submicron displacements based on the multibeam interference principle of the Fabry-Perot (F-P) etalon. A two-dimensional micro-displacement in the focal plane is obtained by calculating the variation of the center coordinate of a concentric interference ring. The virtual plane array pixel subdivision technique and peak-position coordinate local subdivision technology are used to process the massive information of the plane array. In this way, the influence of undetermined systematic error is reduced, which allows an accurate calculation of the center coordinate of the concentric interference ring. The experiment uses an F-P etalon with an interval of approximately 2 mm and a optical lens with focal length about 50 mm. The center of the imaging concentric interference ring is calculated at different positions in the focal plane. The results show that the measurement range can reach 3 mm. The experiment uses a laser phase-modulating homodyne interferometer for the comparison measurements. The results show that in the range of 34 μm, the linear fitting standard deviation of the measured results is 0.0154w″ and the extended uncertainty is 0.036w″ when the coverage factor is 2.45, where w″ is the relative pixel interval. These results confirm the accuracy of the measurement method.

中国激光微信矩阵
补充资料

中图分类号:O436

DOI:10.3788/CJL201946.1204002

所属栏目:测量与计量

基金项目:国家自然科学基金面上项目、国家自然科学基金青年基金;

收稿日期:2019-07-04

修改稿日期:2019-08-19

网络出版日期:2019-12-01

作者单位    点击查看

沈小燕:中国计量大学计量测试工程学院, 浙江 杭州 310018
蓝旭辉:中国计量大学计量测试工程学院, 浙江 杭州 310018
朱鹤年:中国计量大学计量测试工程学院, 浙江 杭州 310018清华大学物理系, 北京 100084
孙志鹏:中国计量大学计量测试工程学院, 浙江 杭州 310018
禹静:中国计量大学计量测试工程学院, 浙江 杭州 310018

联系人作者:沈小燕(xyshen@cjlu.edu.cn)

备注:国家自然科学基金面上项目、国家自然科学基金青年基金;

【1】Kimura A, Wei G, Arai Y, et al. Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness [J]. Precision Engineering. 2010, 34(1): 145-155.

【2】Kimura A, Gao W, Kim W, et al. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement [J]. Precision Engineering. 2012, 36(4): 576-585.

【3】Lee J Y, Chen H Y, Hsu C C, et al. Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution [J]. Sensors and Actuators A: Physical. 2007, 137(1): 185-191.

【4】Sun J H, Zhang J, Liu Z, et al. A vision measurement model of laser displacement sensor and its calibration method [J]. Optics and Lasers in Engineering. 2013, 51(12): 1344-1352.

【5】Zhang J, Sun J H, Liu Z, et al. A flexible calibration method for laser displacement sensors based on a stereo-target [J]. Measurement Science and Technology. 2014, 25(10): 105103.

【6】Yang Y, Deng Y, Tan Y D, et al. Nonlinear error analysis and experimental measurement of Birefringence-Zeeman dual-frequency laser interferometer [J]. Optics Communications. 2019, 436: 264-268.

【7】Wang Z X, Ji C, Wang J, et al. Precision displacement measurement with nanometer resolution based on transmissive laser air-wedge interference [J]. Chinese Journal of Lasers. 2019, 46(9): 0904006.
王子轩, 冀聪, 王晶, 等. 基于透射式激光空气隙干涉的纳米分辨率精密位移测量 [J]. 中国激光. 2019, 46(9): 0904006.

【8】Ge P X, Ye P, Li G H. Application of digital image correlation method based on genetic algorithm in micro-displacement measurement [J]. Acta Optica Sinica. 2018, 38(6): 0612006.
葛朋祥, 叶沛, 李桂华. 基于遗传算法的数字图像相关法在微位移测量中的应用 [J]. 光学学报. 2018, 38(6): 0612006.

【9】Ya''''akobovitz A, Krylov S, Hanein Y. Nanoscale displacement measurement of electrostatically actuated micro-devices using optical microscopy and digital image correlation [J]. Sensors and Actuators A: Physical. 2010, 162(1): 1-7.

【10】Wei Y, Su Y D, Liu C L, et al. Micro-displacement optical fiber sensor based on surface plasmon resonance [J]. Laser & Optoelectronics Progress. 2018, 55(4): 040606.
魏勇, 苏于东, 刘春兰, 等. 基于表面等离子体共振的微位移光纤传感器 [J]. 激光与光电子学进展. 2018, 55(4): 040606.

【11】Haitjema H, Schellekens J, Wetzels L. Calibration of displacement sensors up to 300 μm with nanometre accuracy and direct traceability to a primary standard of length [J]. Metrologia. 2000, 37(1): 25-33.

【12】Lawall J, Kessler E. Michelson interferometry with 10 pm accuracy [J]. Review of Scientific Instruments. 2000, 71(7): 2669-2676.

【13】Niwa Y, Arai K, Ueda A, et al. Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour [J]. Applied Optics. 2009, 48(32): 6105-6110.

【14】Yacoot A, Downs M J. The use of X-ray interferometry to investigate the linearity of the NPL differential plane mirror optical interferometer [J]. Measurement Science and Technology. 2000, 11(8): 1126-1130.

【15】Basile G, Becker P, Bergamin A, et al. Combined optical and X-ray interferometry for high-precision dimensional metrology [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 2000, 456(1995): 701-729.

【16】Hechenblaikner G. Measurement of the absolute wavefront curvature radius in a heterodyne interferometer [J]. Journal of the Optical Society of America A. 2010, 27(9): 2078-2083.

【17】de Vine G, Rabeling D S, Slagmolen B J J, et al. . Picometer level displacement metrology with digitally enhanced heterodyne interferometry [J]. Optics Express. 2009, 17(2): 828-837.

【18】Zhu M H, Wu X J, Wei H Y, et al. Closed-loop displacement control system for piezoelectric transducer based on optical frequency comb [J]. Acta Physica Sinica. 2013, 62(7): 070702.
朱敏昊, 吴学健, 尉昊赟, 等. 基于飞秒光频梳的压电陶瓷闭环位移控制系统 [J]. 物理学报. 2013, 62(7): 070702.

【19】Born M, Wolf E. Principles of optics[M]. Yang J S: Transl. 7th ed. Beijing: Publishing House of Electronics Industry, 2009, 338-369.
马科斯·玻恩, 埃米尔·沃耳夫, [M]. 光学原理. 杨葭荪: 译. 7版. 北京: 电子工业出版社, 2009, 338-369.

【20】Shen X Y, Sun Z P, Hu J C, et al. Method for measuring focal length of transmission objective lens based on F-P etalon [J]. Chinese Journal of Scientific Instrument. 2018, 39(5): 1-8.
沈小燕, 孙志鹏, 胡佳成, 等. 基于F-P标准具的透射物镜焦距测量方法 [J]. 仪器仪表学报. 2018, 39(5): 1-8.

【21】Zhu H N, Xiao Z G, Chen Q, rotationangle: 201510217472.7[P], et al. -11-09 . 2016.
朱鹤年, 肖志刚, 陈强, 等. -11-09 [P]. . 一种用法布里-珀罗标准具测量焦距和转角的方法: 201510217472.7. 2016.

【22】Zhu H N. Lecture on new concept basic physics experiment[M]. Beijing: Tsinghua University Press, 2013, 18-48.
朱鹤年. 新概念基础物理实验讲义[M]. 北京: 清华大学出版社, 2013, 18-48.

【23】Yan L P, Chen Z Q, Chen B Y, et al. Precision PGC demodulation for homodyne interferometer modulated with a combined sinusoidal and triangular signal [J]. Optics Express. 2018, 26(4): 4818-4831.

引用该论文

Shen Xiaoyan,Lan Xuhui,Zhu Henian,Sun Zhipeng,Yu Jing. Submicron Displacement Measurement Method Based on Fabry-Perot Etalon[J]. Chinese Journal of Lasers, 2019, 46(12): 1204002

沈小燕,蓝旭辉,朱鹤年,孙志鹏,禹静. 基于法布里-珀罗标准具的亚微米级位移测量方法[J]. 中国激光, 2019, 46(12): 1204002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF