High Power Laser Science and Engineering, 2019, 7 (3): 03000e54, Published Online: Aug. 26, 2019   

Petawatt and exawatt class lasers worldwide Download: 1586次

Author Affiliations
1 AWE, Aldermaston, Reading, UK
2 OxCHEDS, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
3 CIFS, Blackett Laboratory, Imperial College, London, UK
4 NIF & Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, USA
5 Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
6 Chair for Laser Technology LLT, RWTH Aachen University, Aachen, Germany
7 University of Rochester, Laboratory for Laser Energetics, Rochester, USA
8 Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, UK
9 LULI, CNRS, CEA, Sorbonne Universités, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
10 Department of Physics, The Ohio State University, Columbus, USA
11 Centre for Ultrafast Optical Science, University of Michigan, Ann Arbor, USA
12 Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica (INO), CNR, Pisa, Italy
13 Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena and Helmholtz Institute, Jena, Germany
14 The Graduate School for the Creation of New Photonics Industries, Nishiku, Hamamatsu, Japan
15 Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
16 Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
17 ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
18 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
19 National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
20 Institute for Applied Physics (IAP) at Friedrich-Schiller-University Jena, Jena, Germany
21 Helmholtz Institute Jena, Jena, Germany
22 Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena, Germany
23 Key Laboratory for Laser Plasma (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
24 Centre for Relativistic Laser Science (CoReLS), Institute for Basic Science, Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
25 SUPA, Department of Physics, University of Strathclyde, Glasgow, UK
26 Colorado State University, Fort Collins, Colorado, USA
27 Department of Experimental Physics, University of Szeged, Szeged, Hungary
28 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract
In the 2015 review paper ‘Petawatt Class Lasers Worldwide’ a comprehensive overview of the current status of high-power facilities of ${>}200~\text{TW}$ was presented. This was largely based on facility specifications, with some description of their uses, for instance in fundamental ultra-high-intensity interactions, secondary source generation, and inertial confinement fusion (ICF). With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification (CPA), which made these lasers possible, we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed. We are now in the era of multi-petawatt facilities coming online, with 100 PW lasers being proposed and even under construction. In addition to this there is a pull towards development of industrial and multi-disciplinary applications, which demands much higher repetition rates, delivering high-average powers with higher efficiencies and the use of alternative wavelengths: mid-IR facilities. So apart from a comprehensive update of the current global status, we want to look at what technologies are to be deployed to get to these new regimes, and some of the critical issues facing their development.

Colin N. Danson, Constantin Haefner, Jake Bromage, Thomas Butcher, Jean-Christophe F. Chanteloup, Enam A. Chowdhury, Almantas Galvanauskas, Leonida A. Gizzi, Joachim Hein, David I. Hillier, Nicholas W. Hopps, Yoshiaki Kato, Efim A. Khazanov, Ryosuke Kodama, Georg Korn, Ruxin Li, Yutong Li, Jens Limpert, Jingui Ma, Chang Hee Nam, David Neely, Dimitrios Papadopoulos, Rory R. Penman, Liejia Qian, Jorge J. Rocca, Andrey A. Shaykin, Craig W. Siders, Christopher Spindloe, Sándor Szatmári, Raoul M. G. M. Trines, Jianqiang Zhu, Ping Zhu, Jonathan D. Zuegel. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e54.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!