首页 > 论文 > 中国激光 > 46卷 > 6期(pp:614008--1)

基于倾斜波前技术的高能强场太赫兹辐射脉冲源

High-Energy Strong-Field Terahertz Pulses Based on Tilted-Pulse-Front Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

回顾了基于倾斜波前技术并利用飞秒激光抽运铌酸锂晶体产生高能强场太赫兹辐射脉冲源的研究背景和发展历程,系统地介绍了倾斜波前装置中各组成部分对太赫兹辐射脉冲的能量转化效率以及发射特性的影响,提出了利用这种技术产生mJ量级的超强太赫兹源的可能途径,展示了强太赫兹源的潜在应用价值。

Abstract

We review the research background and development history of the generation of high-energy strong-field terahertz radiation through the tilted-pulse-front technique in lithium niobite crystals driven by femtosecond laser pulses. We systematically analyze the influence of each component in the tilted-pulse-front setup on the energy conversion efficiency and emission properties of terahertz radiation and discuss the feasibility of the generation of mJ terahertz pulses through the proposed method. Further, the numerous promising applications of strong-field terahertz sources are demonstrated.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0614008

所属栏目:太赫兹技术

基金项目:国家自然科学基金、中国科学院战略重点研究计划、北京航空航天大学卓越百人和青年拔尖人才支持计划;

收稿日期:2018-12-13

修改稿日期:2019-01-17

网络出版日期:2019-06-14

作者单位    点击查看

吴晓君:北京航空航天大学电子信息工程学院, 北京 100083北京航空航天大学微波感知与安防应用北京市重点实验室, 北京 100191
郭丰玮:北京航空航天大学电子信息工程学院, 北京 100083北京航空航天大学微波感知与安防应用北京市重点实验室, 北京 100191
马景龙:中国科学院物理研究所北京凝聚态物理国家实验室(筹), 北京 100190
欧阳琛:中国科学院物理研究所北京凝聚态物理国家实验室(筹), 北京 100190中国科学院大学物理科学学院, 北京 100049
王天泽:中国科学院物理研究所北京凝聚态物理国家实验室(筹), 北京 100190中国科学院大学物理科学学院, 北京 100049
张保龙:中国科学院物理研究所北京凝聚态物理国家实验室(筹), 北京 100190中国科学院大学物理科学学院, 北京 100049
王暄:中国科学院物理研究所北京凝聚态物理国家实验室(筹), 北京 100190
李尚卿:中国科学院物理研究所北京凝聚态物理国家实验室(筹), 北京 100190中国科学院大学物理科学学院, 北京 100049
孔德胤:北京航空航天大学电子信息工程学院, 北京 100083北京航空航天大学微波感知与安防应用北京市重点实验室, 北京 100191
柴姝愫:北京航空航天大学电子信息工程学院, 北京 100083北京航空航天大学微波感知与安防应用北京市重点实验室, 北京 100191
阮存军:北京航空航天大学电子信息工程学院, 北京 100083北京航空航天大学微波感知与安防应用北京市重点实验室, 北京 100191
苗俊刚:北京航空航天大学电子信息工程学院, 北京 100083北京航空航天大学微波感知与安防应用北京市重点实验室, 北京 100191
李玉同:中国科学院物理研究所北京凝聚态物理国家实验室(筹), 北京 100190中国科学院大学物理科学学院, 北京 100049松山湖材料实验室, 广东 东莞 523808

联系人作者:吴晓君(xiaojunwu@buaa.edu.cn)

备注:国家自然科学基金、中国科学院战略重点研究计划、北京航空航天大学卓越百人和青年拔尖人才支持计划;

【1】Hafez H A, Chai X, Ibrahim A et al. Intense terahertz radiation and their applications. Journal of Optics. 18(9), (2016).

【2】Dhillon S S, Vitiello M S, Linfield E H et al. The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics. 50(4), (2017).

【3】Wu X J, Calendron A L, Ravi K et al. Optical generation of single-cycle 10 MW peak power 100 GHz waves. Optics Express. 24(18), 21059-21069(2016).

【4】Hoffmann M C, Brandt N C, Hwang H Y et al. Terahertz Kerr effect. Applied Physics Letters. 95(23), (2009).

【5】Sharma G, Razzari L, Su F H et al. Time-resolved terahertz spectroscopy of free carrier nonlinear dynamics in semiconductors. IEEE Photonics Journal. 2(4), 578-592(2010).

【6】Fleischer S, Zhou Y, Field R W et al. Molecular orientation and alignment by intense single-cycle THz pulses. Physical Review Letters. 107(16), (2011).

【7】Tanaka K, Hirori H and Nagai M. THz nonlinear spectroscopy of solids. IEEE Transactions on Terahertz Science and Technology. 1(1), 301-312(2011).

【8】Liu M K, Hwang H Y, Tao H et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature. 487(7407), 345-348(2012).

【9】Kampfrath T, Tanaka K and Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics. 7(9), 680-690(2013).

【10】Lange C, Maag T, Hohenleutner M et al. Extremely nonperturbative nonlinearities in GaAs driven by atomically strong terahertz fields in gold metamaterials. Physical Review Letters. 113(22), (2014).

【11】Schubert O, Hohenleutner M, Langer F et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics. 8(8), 119-123(2014).

【12】Egodapitiya K N, Li S and Jones R R. Terahertz-induced field-free orientation of rotationally excited molecules. Physical Review Letters. 112(10), (2014).

【13】Maag T, Bayer A, Baierl S et al. Coherent cyclotron motion beyond Kohn''s theorem. Nature Physics. 12(2), 119-123(2016).

【14】Iwaszczuk K, Zalkovskij M, Strikwerda A C et al. Nitrogen plasma formation through terahertz-induced ultrafast electron field emission. Optica. 2(2), 116-123(2015).

【15】Bahk Y M, Kang B J, Kim Y S et al. Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies. Physical Review Letters. 115(12), (2015).

【16】Hafez H A, Kovalev S, Deinert J C et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature. 561(7724), 507-511(2018).

【17】Reimann J, Schlauderer S, Schmid C P et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature. 562(7727), 396-400(2018).

【18】Kang T. Kim R H J Y, Choi G, et al. Terahertz rectification in ring-shaped quantum barriers. Nature Communications. 9, (2018).

【19】Vampa G, Hammond T J, Taucer M et al. Strong-field optoelectronics in solids. Nature Photonics. 12(8), 465-468(2018).

【20】Bonetti S, Hoffmann MC, Sher M J et al. THz-driven ultrafast spin-lattice scattering in amorphous metallic ferromagnets. Physical Review Letters. 117(8), (2016).

【21】Kovalev S, Wang Z, Deinert J C et al. Selective THz control of magnetic order: new opportunities from superradiant undulator sources. Journal of Physics D: Applied Physics. 51(11), (2018).

【22】Stojanovic N and Drescher M. Accelerator- and laser-based sources of high-field terahertz pulses. Journal of Physics B: Atomic, Molecular and Optical Physics. 46(19), (2013).

【23】Kim K Y, Taylor A J, Glownia J H et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics. 2(10), 605-609(2008).

【24】Shangguan M J, Xia H Y, Wang C et al. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer. Optics Express. 24(17), 19322-19336(2016).

【25】Liao G Q, Li Y T, Zhang Y H et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Physical Review Letters. 116(20), (2016).

【26】Liao G Q, Liu H, Li Y T et al. -05-11)[2018-11-25]. org/abs/1805, (2018).

【27】Vicario C, Ovchinnikov A V, Ashitkov S I et al. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr∶Mg2SiO4 laser. Optics Letters. 39(23), 6632-6635(2014).

【28】Huang S W, Granados E, Huang W R et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Optics Letters. 38(5), 796-798(2013).

【29】Fül?p J A, Ollmann Z, Lombosi C et al. Efficient generation of THz pulses with 0.4 mJ energy. Optics Express. 22(17), 20155-20163(2014).

【30】Fül?p J A, Polónyi G, Monoszlai B et al. Highly efficient scalable monolithic semiconductor terahertz pulse source. Optica. 3(10), 1075-1078(2016).

【31】Zhang Z L, Chen Y P, Cui S et al. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nature Photonics. 12(9), 554-559(2018).

【32】Wang W M, Gibbon P, Sheng Z M et al. Tunable circularly polarized terahertz radiation from magnetized gas plasma. Physical Review Letters. 114(25), (2015).

【33】Yardimci N T, Yang S H, Berry C W et al. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology. 5(2), 223-229(2015).

【34】Gopal A, Singh P, Herzer S et al. Characterization of 700 μJ T rays generated during high-power laser solid interaction. Optics Letters. 38(22), 4705-4707(2013).

【35】Chai X and Ropagnol X. Raeis-Zadeh S M, et al. Subcycle terahertz nonlinear optics. Physical Review Letters. 121(14), (2018).

【36】Vicario C, Shalaby M and Hauri C P. Subcycle extreme nonlinearities in GaP induced by an ultrastrong terahertz field. Physical Review Letters. 118(8), (2017).

【37】Blanchard F, Razzari L, Bandulet H C et al. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Optics Express. 15(20), 13212-13220(2007).

【38】Shalaby M and Hauri C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nature Communications. 6, (2015).

【39】Shalaby M and Hauri C P. Air nonlinear dynamics initiated by ultra-intense lambda-cubic terahertz pulses. Applied Physics Letters. 106(18), (2015).

【40】Shalaby M, Vicario C and Hauri C P. Low frequency terahertz-induced demagnetization in ferromagnetic nickel. Applied Physics Letters. 108(18), (2016).

【41】Giorgianni F, Vicario C, Shalaby M et al. High-efficiency and low distortion photoacoustic effect in 3D graphene sponge. Advanced Functional Materials. 28(2), (2018).

【42】Monoszlai B, Vicario C, Jazbinsek M et al. High-energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti∶sapphire wavelength. Optics Letters. 38(23), 5106-5109(2013).

【43】Hebling J, Almasi G, Kozma I et al. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express. 10(21), 1161-1166(2002).

【44】Ravi K, Huang W R, Carbajo S et al. Limitations to THz generation by optical rectification using tilted pulse fronts. Optics Express. 22(17), 20239-20251(2014).

【45】Yang K H, Richards P L and Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Applied Physics Letters. 19(9), 320-323(1971).

【46】Yeh K L, Hoffmann M C, Hebling J et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters. 90(17), (2007).

【47】Hoffmann M C, Yeh K L, Hebling J et al. Efficient terahertz generation by optical rectification at 1035 nm. Optics Express. 15(18), 11706-11713(2007).

【48】Pálfalvi L, Fül?p J A, Almási G et al. Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification. Applied Physics Letters. 92(17), (2008).

【49】Bakunov M I, Bodrov S B and Tsarev M V. Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect. Journal of Applied Physics. 104(7), (2008).

【50】Hebling J, Yeh K L, Hoffmann M C et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B. 25(7), B6-B19(2008).

【51】Stepanov A G, Bonacina L, Chekalin S V et al. Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification. Optics Letters. 33(21), 2497-2499(2008).

【52】Werley C A and Nelson K A. Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts. Applied Physics Letters. 95(10), (2009).

【53】Bodrov S B, Stepanov A N, Bakunov M I et al. Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core. Optics Express. 17(3), 1871-1878(2009).

【54】Gorunski N, Dimitrov N, Dreischuh A et al. Pulse-front tilt created in misaligned dispersionless optical systems and correct interferometric autocorrelation. Optics Communications. 283(24), 5192-5198(2010).

【55】Hebling J, Hoffmann M C, Hwang H Y et al. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump-terahertz probe measurements. Physical Review B. 81(3), (2010).

【56】Fül?p J A, Pálfalvi L, Almási G et al. Design of high-energy terahertz sources based on optical rectification. Optics Express. 18(12), 12311-12327(2010).

【57】Hirori H, Doi A, Blanchard F et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters. 98(9), (2011).

【58】Fül?p J A, Pálfalvi L, Hoffmann M C et al. Towards generation of mJ-level ultrashort THz pulses by optical rectification. Optics Express. 19(16), 15090-15097(2011).

【59】Fül?p J A, Pálfalvi L, Klingebiel S et al. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters. 37(4), 557-559(2012).

【60】Ropagnol X, Morandotti R, Ozaki T et al. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask. Optics Letters. 36(14), 2662-2664(2011).

【61】Ollmann Z, Hebling J and Almási G. Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification. Applied Physics B. 108(4), 821-826(2012).

【62】Bakunov M I, Tsarev M V and Mashkovich E A. Terahertz difference-frequency generation by tilted amplitude front excitation. Optics Express. 20(27), 28573-28585(2012).

【63】Avestisyan Y, Zhang C H, Kawayama I et al. Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask. Optics Express. 20(23), 25752-25757(2012).

【64】Bodrov S B, Murzanev A A, Sergeev Y A et al. Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes. Applied Physics Letters. 103(25), (2013).

【65】Kunitski M, Richter M, Thomson M D et al. Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses. Optics Express. 21(6), 6826-6836(2013).

【66】Fan S Z, Takeuchi H, Ouchi T et al. Broadband terahertz wave generation from a MgO∶LiNbO3 ridge waveguide pumped by a 1.5 μm femtosecond fiber laser. Optics Letters. 38(10), 1654-1656(2013).

【67】Vicario C, Monoszlai B, Lombosi C et al. Pump pulse width and temperature effects in lithium niobate for efficient THz generation. Optics Letters. 38(24), 5373-5376(2013).

【68】Sivarajah P and Werley C A. Ofori-Okai B K, et al. Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3. Applied Physics A. 112(3), 615-622(2013).

【69】Stepanov A G, Hebling J and Kuhl J. Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts. Applied Physics Letters. 83(15), 3000-3002(2003).

【70】Hebling J, Stepanov A G, Almási G et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Applied Physics B: Lasers and Optics. 78(5), 593-599(2004).

【71】Stepanov A G, Kuhl J, Kozma I Z et al. Scaling up the energy of THz pulses created by optical rectification. Optics Express. 13(15), 5762-5768(2005).

【72】Zhu L G, Zhong S C, Li J et al. Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser. [C]∥2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 25-30, 2016, Copenhagen, Denmark. New York: IEEE. 7758391, (2016).

【73】Wu X J, Ma J L, Zhang B L et al. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti∶sapphire laser pulses. Optics Express. 26(6), 7107-7716(2018).

【74】Wu X J, Chai S S, Ma J L et al. Optimization of highly efficient terahertz generation in lithium niobate driven by Ti∶sapphire laser pulses with 30 fs pulse duration. Chinese Optics Letters. 16(4), (2018).

【75】Lombosi C, Polónyi G, Mechler M et al. Nonlinear distortion of intense THz beams. New Journal of Physics. 17(8), (2015).

【76】Tsubouchi M, Nagashima K, Yoshida F et al. Contact grating device with Fabry-Perot resonator for effective terahertz light generation. Optics Letters. 39(18), 5439-5442(2014).

【77】Vidal S, Degert J, Tondusson M et al. Optimized terahertz generation via optical rectification in ZnTe crystals. Journal of the Optical Society of America B. 31(1), 149-153(2014).

【78】Baek I H, Kang B J, Jeong Y U et al. Diffraction-limited high-power single-cycle terahertz pulse generation in prism-cut LiNbO3for precise terahertz applications. Journal of the Optical Society of Korea. 18(1), 60-64(2014).

【79】Ronny Huang W, Huang S W, Granados E et al. Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate. Journal of Modern Optics. 62(18), 1486-1493(2015).

【80】Zhang S T, Asoubar D, Kammel R et al. Analysis of pulse front tilt in simultaneous spatial and temporal focusing. Journal of the Optical Society of America A. 31(11), 2437-2446(2014).

【81】Bakunov M I and Bodrov S B. Terahertz generation with tilted-front laser pulses in a contact-grating scheme. Journal of the Optical Society of America B. 31(11), 2549-2557(2014).

【82】Ollmann Z, Fül?p J A, Hebling J et al. Design of a high-energy terahertz pulse source based on ZnTe contact grating. Optics Communications. 315, 159-163(2014).

【83】Blanchard F, Ropagnol X, Hafez H et al. Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies. Optics Letters. 39(15), 4333-4336(2014).

【84】Yoshida F, Nagashima K, Tsubouchi M et al. High-efficiency contact grating fabricated on the basis of a Fabry-Perot type resonator for terahertz wave generation. Japanese Journal of Applied Physics. 55(1), (2016).

【85】Ravi K, Carbajo S, Huang W R et al. Self-limiting property of terahertz generation by optical rectification using tilted-pulse-fronts. [C]∥The European Conference on Lasers and Electro-Optics 2015, June 21-25, 2015, Munich, Germany. Washington D. C.: OSA. 100-104(2015).

【86】Pálfalvi L, Ollmann Z, Tokodi L et al. Hybrid tilted-pulse-front excitation scheme for efficient generation of high-energy terahertz pulses. [C]∥2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 25-30, 2016, Copenhagen, Denmark. New York: IEEE. 7759010, (2016).

【87】Ofori-Okai B K, Sivarajah P, Ronny Huang W et al. . THz generation using a reflective stair-step echelon. Optics Express. 24(5), 5057-5068(2016).

【88】Pálfalvi L, Tóth G, Tokodi L et al. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation. Optics Express. 25(24), 29560-29573(2017).

【89】Matsunaga R, Tsuji N, Fujita H et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science. 345(6201), 1145-1149(2014).

【90】Cocker T L, Jelic V, Gupta M et al. An ultrafast terahertz scanning tunnelling microscope. Nature Photonics. 7(8), 620-625(2013).

【91】Sie E J, Nyby C M, Pemmaraju C D et al. An ultrafast symmetry switch in a Weyl semimetal. Nature. 565(7737), 61-66(2019).

【92】Wu X J, Carbajo S, Ravi K et al. Terahertz generation in lithium niobate driven by Ti∶sapphire laser pulses and its limitations. Optics Letters. 39(18), 5403-5436(2014).

【93】Stepanov A G, Henin S, Petit Y et al. Mobile source of high-energy single-cycle terahertz pulses. Applied Physics B. 101(1/2), 11-14(2010).

【94】Wu X J, Ravi K, Ronny Huang W Q et al. -01-26)[2018-11-25]. org/abs/1601, (2016).

【95】Pálfalvi L, Hebling J, Kuhl J et al. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range. Journal of Applied Physics. 97(12), (2005).

【96】Wu X J, Zhou C, Huang W R et al. Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range. Optics Express. 23(23), 29729-29737(2015).

【97】Sun Y M, Mao Z L, Hou B H et al. Giant birefringence of lithium niobate crystals in the terahertz region. Chinese Physics Letters. 24(2), 414-417(2007).

【98】Bakunov M I, Bodrov S B and Mashkovich E A. Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals. Journal of the Optical Society of America B. 28(7), 1724-1734(2011).

【99】Zhang D, Fallahi A, Hemmer M et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nature Photonics. 12(6), 336-342(2018).

【100】Ronny Huang W, Fallahi A, Wu X J et al. Terahertz-driven, all-optical electron gun. Optica. 3(11), 1209-1212(2016).

【101】Seifert T, Jaiswal S, Sajadi M et al. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV/cm from a metallic spintronic emitter. Applied Physics Letters. 110(25), (2017).

【102】Kampfrath T, Battiato M, Maldonado P et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nature Nanotechnology. 8(4), 256-260(2013).

【103】Seifert T, Jaiswal S, Martens U et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics. 10(7), 483-488(2016).

【104】Yang D W, Liang J H, Zhou C et al. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Advanced Optical Materials. 4(12), 1944-1949(2016).

【105】Huisman T J, Mikhaylovskiy R V, Costa J D et al. Femtosecond control of electric currents in metallic ferromagnetic heterostructures. Nature Nanotechnology. 11(5), 455-458(2016).

【106】Wu Y, Elyasi M, Qiu X P et al. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Advanced Materials. 29(4), (2017).

【107】Feng Z, Yu R, Zhou Y et al. Highly efficient spintronic terahertz emitter enabled by metal-dielectric photonic crystal. Advanced Optical Materials. 6(23), (2018).

【108】Seifert T S, Jaiswal S, Barker J et al. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy. Nature Communications. 9, (2018).

【109】Zhou C, Liu Y P, Wang Z et al. Broadband terahertz generation via the interface inverse rashba-edelstein effect. Physical Review Letters. 121(8), (2018).

【110】Jungfleisch M B, Zhang Q, Zhang W et al. Control of terahertz emission by ultrafast spin-charge current conversion at rashba interfaces. Physical Review Letters. 120(20), (2018).

【111】Jin Q. E Y W, Williams K, et al. Observation of broadband terahertz wave generation from liquid water. Applied Physics Letters. 111(7), (2017).

【112】E Y W. Jin Q, Tcypkin A, et al. Terahertz wave generation from liquid water films via laser-induced breakdown. Applied Physics Letters. 113(18), (2018).

引用该论文

Xiaojun Wu,Fengwei Guo,Jinglong Ma,Chen Ouyang,Tianze Wang,Baolong Zhang,Xuan Wang,Shangqing Li,Deyin Kong,Shusu Chai,Cunjun Ruan,Jungang Miao,Yutong Li. High-Energy Strong-Field Terahertz Pulses Based on Tilted-Pulse-Front Technique[J]. Chinese Journal of Lasers, 2019, 46(6): 0614008

吴晓君,郭丰玮,马景龙,欧阳琛,王天泽,张保龙,王暄,李尚卿,孔德胤,柴姝愫,阮存军,苗俊刚,李玉同. 基于倾斜波前技术的高能强场太赫兹辐射脉冲源[J]. 中国激光, 2019, 46(6): 0614008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF