Advanced Photonics, 2020, 2 (3): 036002, Published Online: May. 13, 2020   

Liquid crystal integrated metalens with tunable chromatic aberration Download: 828次

Author Affiliations
1 Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
2 Jiangsu Industrial Technology Research Institute, Institute for Smart Liquid Crystals, Changshu, China
Abstract
Overcoming chromatic aberrations is a vital concern in imaging systems in order to facilitate full-color and hyperspectral imaging. By contrast, large dispersion holds opportunities for spectroscopy and tomography. Combining both functions into a single component will significantly enhance its versatility. A strategy is proposed to delicately integrate two lenses with a static resonant phase and a switchable geometric phase separately. The former is a metasurface lens with a linear phase dispersion. The latter is composed of liquid crystals (LCs) with space-variant orientations with a phase profile that is frequency independent. By this means, a broadband achromatic focusing from 0.9 to 1.4 THz is revealed. When a saturated bias is applied on LCs, the geometric phase modulation vanishes, leaving only the resonant phase of the metalens. Correspondingly, the device changes from achromatic to dispersive. Furthermore, a metadeflector with tunable dispersion is demonstrated to verify the universality of the proposed method. Our work may pave a way toward active metaoptics, promoting various imaging applications.

Zhixiong Shen, Shenghang Zhou, Xinan Li, Shijun Ge, Peng Chen, Wei Hu, Yanqing Lu. Liquid crystal integrated metalens with tunable chromatic aberration[J]. Advanced Photonics, 2020, 2(3): 036002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!