首页 > 论文 > 光学学报 > 40卷 > 1期(pp:0111008--1)

基于数字全息术的近场成像与应用 (特邀综述)

Digital Holography Based Near-field Imaging and Its Application (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近场是指局域在物体表面附近亚波长范围内的空间区域。倏逝波存在于近场区域,可利用其与物质的相互作用特性对位于近场区域的某些介质样品进行高分辨率成像,及对样品物性变化进行高灵敏度测量,其中,基于全内反射和表面等离子体共振的近场成像与测量方法已在许多领域获得广泛应用。将数字全息术与这类近场测量方法相结合,可进一步有效解决自近场区域反射光波的相位分布的高精度全场动态测量问题。重点介绍基于全内反射数字全息术和表面等离子体共振全息显微术的近场成像方法与测量应用研究进展。

Abstract

The near-field region is confined within a subwavelength range from the surface of an object. Evanescent waves exist in the near field, and by utilizing their interaction with matter, near-field high-resolution imaging as well as high sensitivity detection of physical changes of some specimen within the near field region can be realized. Near-field imaging and measurement methods based on total internal reflection (TIR) and surface plasmon resonance(SPR) have a wide range of applications in many fields. By combining digital holography with these near-field measurement methods, accurate, dynamic, and full-field measurements of the phase distribution of a light wave reflected from the near field region can be achieved. This article mainly reviews near-field imaging approaches and measurement applications based on TIR digital holography and SPR holographic microscopy.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/AOS202040.0111008

所属栏目:“计算光学成像"专题

基金项目:国家自然科学基金国家重大科研仪器研制项目、国家自然科学基金委员会与中国工程物理研究院联合基金、中央高校基本科研业务费专项资金;

收稿日期:2019-09-30

修改稿日期:2019-10-29

网络出版日期:2020-01-01

作者单位    点击查看

戴思清:西北工业大学物理科学与技术学院, 陕西 西安 710129陕西省光信息技术重点实验室, 陕西 西安 710072超常条件材料物理与化学教育部重点实验室, 陕西 西安 710072
豆嘉真:西北工业大学物理科学与技术学院, 陕西 西安 710129陕西省光信息技术重点实验室, 陕西 西安 710072超常条件材料物理与化学教育部重点实验室, 陕西 西安 710072
张继巍:西北工业大学物理科学与技术学院, 陕西 西安 710129陕西省光信息技术重点实验室, 陕西 西安 710072超常条件材料物理与化学教育部重点实验室, 陕西 西安 710072
邸江磊:西北工业大学物理科学与技术学院, 陕西 西安 710129陕西省光信息技术重点实验室, 陕西 西安 710072超常条件材料物理与化学教育部重点实验室, 陕西 西安 710072
赵建林:西北工业大学物理科学与技术学院, 陕西 西安 710129陕西省光信息技术重点实验室, 陕西 西安 710072超常条件材料物理与化学教育部重点实验室, 陕西 西安 710072

联系人作者:邸江磊(jiangleidi@nwpu.edu.cn); 赵建林(jlzhao@nwpu.edu.cn);

备注:国家自然科学基金国家重大科研仪器研制项目、国家自然科学基金委员会与中国工程物理研究院联合基金、中央高校基本科研业务费专项资金;

【1】Courjon D, Bainier C. Near field microscopy and near field optics [J]. Reports on Progress in Physics. 1994, 57(10): 989-1028.

【2】Girard C, Dereux A. Near-field optics theories [J]. Reports on Progress in Physics. 1996, 59(5): 657-699.

【3】Taitt C R, Anderson G P, Ligler F S. Evanescent wave fluorescence biosensors: advances of the last decade [J]. Biosensors and Bioelectronics. 2016, 76: 103-112.

【4】Kawata S. Near-field optics and surface plasmon polaritons [M]. Berlin, Heidelberg: Springer. 2001.

【5】Dunn R C. Near-field scanning optical microscopy [J]. Chemical Reviews. 1999, 99(10): 2891-2928.

【6】Ma C B, Liu Z W. A super resolution metalens with phase compensation mechanism [J]. Applied Physics Letters. 2010, 96(18): 183103.

【7】Lu D, Liu Z W. Hyperlenses and metalenses for far-field super-resolution imaging [J]. Nature Communications. 2012, 3: 1205.

【8】Barbry M, Koval P, Marchesin F, et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics [J]. Nano Letters. 2015, 15(5): 3410-3419.

【9】Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging [J]. Science. 2016, 352(6290): 1190-1194.

【10】Jiang R H, Chen C, Lin D Z, et al. Near-field plasmonic probe with super resolution and high throughput and signal-to-noise ratio [J]. Nano Letters. 2018, 18(2): 881-885.

【11】Masson J F. Surface plasmon resonance clinical biosensors for medical diagnostics [J]. ACS Sensors. 2017, 2(1): 16-30.

【12】Notcovich A G, Zhuk V, Lipson S G. Surface plasmon resonance phase imaging [J]. Applied Physics Letters. 2000, 76(13): 1665-1667.

【13】Balistreri M L M, Korterik J P, Kuipers L, et al. Local observations of phase singularities in optical fields in waveguide structures [J]. Physical Review Letters. 2000, 85(2): 294-297.

【14】Axelrod D, Thompson N L, Burghardt T P. Total internal reflection fluorescent microscopy [J]. Journal of Microscopy. 1983, 129(1): 19-28.

【15】Kobitski A Y, Heyes C D, Nienhaus G U. Total internal reflection fluorescence microscopy: a powerful tool to study single quantum dots [J]. Applied Surface Science. 2004, 234: 86-92.

【16】Gumpp H, Stahl S W, Strackharn M, et al. Ultrastable combined atomic force and total internal fluorescence microscope [J]. Review of Scientific Instruments. 2009, 80(6): 063704.

【17】Chan C U, Ohl C D. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics [J]. Physical Review Letters. 2012, 109(17): 174501.

【18】Roostaie N, Sheykhi E, Japelaghi F, et al. A thin layer imaging with the total internal reflection fluorescence microscopy [J]. Journal of Optoelectronical Nanostructures. 2017, 2(3): 47-54.

【19】Song D, Yang R, Wang H L, et al. Development of dual-color total internal reflection fluorescence biosensor for simultaneous quantitation of two small molecules and their affinity constants with antibodies [J]. Biosensors and Bioelectronics. 2019, 126: 824-830.

【20】Chiu M H, Lee J Y, Su D C. Complex refractive-index measurement based on Fresnel''''s equations and the uses of heterodyne interferometry [J]. Applied Optics. 1999, 38(19): 4047-4052.

【21】Jian Z C, Hsieh P J, Hsieh H C, et al. A method for measuring two-dimensional refractive index distribution with the total internal reflection of p-polarized light and the phase-shifting interferometry [J]. Optics Communications. 2006, 268(1): 23-26.

【22】Chu Y C, Chang W Y, Chen K H, et al. Full-field refractive index measurement with simultaneous phase-shift interferometry [J]. Optik. 2014, 125(13): 3307-3310.

【23】Hinman S S. McKeating K S, Cheng Q. Surface plasmon resonance: material and interface design for universal accessibility [J]. Analytical Chemistry. 2018, 90(1): 19-39.

【24】Kretschmann E, Raether H. Notizen: radiative decay of non radiative surface plasmons excited by light [J]. Zeitschrift Für Naturforschung A. 1968, 23(12): 2135-2136.

【25】Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance [J]. Sensors and Actuators. 1982, 3: 79-88.

【26】Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review [J]. Sensors and Actuators B: Chemical. 1999, 54(1/2): 3-15.

【27】Green R J, Frazier R A, Shakesheff K M, et al. Surface plasmon resonance analysis of dynamic biological interactions with biomaterials [J]. Biomaterials. 2000, 21(18): 1823-1835.

【28】Steiner G. Surface plasmon resonance imaging [J]. Analytical and Bioanalytical Chemistry. 2004, 379(3): 328-331.

【29】Yih J N, Chien F C, Lin C Y, et al. Angular-interrogation attenuated total reflection metrology system for plasmonic sensors [J]. Applied Optics. 2005, 44(29): 6155-6162.

【30】Huang Z H, Wang X P, Zhan S Y, et al. Contrast-enhancing polarization control method for surface plasmon imaging sensor [J]. Optical Engineering. 2012, 51(9): 094402.

【31】Lan G Q, Liu S G, Zhang X R, et al. A simplified high figure-of-merit prism-free surface plasmon resonance refractive index sensor based on self adaptive angular interrogation [J]. Review of Scientific Instruments. 2015, 86(2): 025006.

【32】Wu L M, Guo J, Wang Q K, et al. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor [J]. Sensors and Actuators B: Chemical. 2017, 249: 542-548.

【33】Nikitin P I, Beloglazov A A, Kochergin V E, et al. Surface plasmon resonance interferometry for biological and chemical sensing [J]. Sensors and Actuators B: Chemical. 1999, 54(1/2): 43-50.

【34】Lee J Y, Shih H C, Hong C T, et al. Measurement of refractive index change by surface plasmon resonance and phase quadrature interferometry [J]. Optics Communications. 2007, 276(2): 283-287.

【35】Patskovsky S, Meunier M, Prasad P N, et al. Self-noise-filtering phase-sensitive surface plasmon resonance biosensing [J]. Optics Express. 2010, 18(14): 14353-14358.

【36】Huang Y H, Ho H P, Wu S Y, et al. Phase sensitive SPR sensor for wide dynamic range detection [J]. Optics Letters. 2011, 36(20): 4092-4094.

【37】Shao Y H, Li Y, Gu D Y, et al. Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor [J]. Optics Letters. 2013, 38(9): 1370-1372.

【38】Liu C, Liu Q G, Hu X T. SPR phase detection for measuring the thickness of thin metal films [J]. Optics Express. 2014, 22(7): 7574-7580.

【39】Bera M, Banerjee J, Ray M. Experimental surface plasmon resonance modulated radially sheared interference imaging using a birefringent lens [J]. Applied Physics Letters. 2014, 104(25): 251104.

【40】Kabashin A V, Patskovsky S, Grigorenko A N. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing [J]. Optics Express. 2009, 17(23): 21191-21204.

【41】Rothenh?usler B, Knoll W. Surface-plasmon microscopy [J]. Nature. 1988, 332(6165): 615-617.

【42】Berger C E H, Kooyman R P H, Greve J. Resolution in surface plasmon microscopy [J]. Review of Scientific Instruments. 1994, 65(9): 2829-2836.

【43】Fl?tgen G, Krischer K, Pettinger B, et al. Two-dimensional imaging of potential waves in electrochemical systems by surface plasmon microscopy [J]. Science. 1995, 269(5224): 668-671.

【44】Brockman J M, Nelson B P, Corn R M. Surface plasmon resonance imaging measurements of ultrathin organic films [J]. Annual Review of Physical Chemistry. 2000, 51(1): 41-63.

【45】Kim I, Kihm K D. Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids [J]. Optics Letters. 2010, 35(3): 393-395.

【46】MacGriff C, Wang S P, Wiktor P, et al. Charge-based detection of small molecules by plasmonic-based electrochemical impedance microscopy [J]. Analytical Chemistry. 2013, 85(14): 6682-6687.

【47】Huang B, Yu F, Zare R N. Surface plasmon resonance imaging using a high numerical aperture microscope objective [J]. Analytical Chemistry. 2007, 79(7): 2979-2983.

【48】Tan P S, Yuan X C, Lin J, et al. Surface plasmon polaritons generated by optical vortex beams [J]. Applied Physics Letters. 2008, 92(11): 111108.

【49】Su Y D, Chiu K C, Chang N S, et al. Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy [J]. Optics Express. 2010, 18(19): 20125-20135.

【50】Wang S, Shan X, Patel U, et al. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance [J]. Proceedings of the National Academy of Sciences. 2010, 107(37): 16028-16032.

【51】Wang Y X, Shan X N, Cui F J, et al. Electrochemical reactions in subfemtoliter-droplets studied with plasmonics-based electrochemical current microscopy [J]. Analytical Chemistry. 2015, 87(1): 494-498.

【52】Toma K, Kano H, Offenh?usser A. Label-free measurement of cell-electrode cleft gap distance with high spatial resolution surface plasmon microscopy [J]. ACS Nano. 2014, 8(12): 12612-12619.

【53】Peterson A W, Halter M, Tona A, et al. High resolution surface plasmon resonance imaging for single cells [J]. BMC Cell Biology. 2014, 15: 35.

【54】Chen Z X, Shan X N, Guan Y, et al. Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy [J]. ACS Nano. 2015, 9(12): 11574-11581.

【55】Yang Y Z, Yu H, Shan X N, et al. Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique [J]. Small. 2015, 11(24): 2878-2884.

【56】Shan X N, Chen S, Wang H, et al. Mapping local quantum capacitance and charged impurities in graphene via plasmonic impedance imaging [J]. Advanced Materials. 2015, 27(40): 6213-6219.

【57】Chao Y C, Shan X N, Tao N J. Appling plasmonics based electrochemical microscopy to thin-layer electrochemistry [J]. Journal of Electroanalytical Chemistry. 2016, 781: 161-165.

【58】Kreysing E, Hassani H, Hampe N, et al. Nanometer-resolved mapping of cell-substrate distances of contracting cardiomyocytes using surface plasmon resonance microscopy [J]. ACS Nano. 2018, 12(9): 8934-8942.

【59】Kim M K. Digital holographic microscopy [M]. New York, NY: Springer. 2011, 1-8.

【60】Di J L, Zhao J L, Jiang H Z, et al. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning [J]. Applied Optics. 2008, 47(30): 5654-5659.

【61】Di J L, Zhao J L, Fan Q, et al. Phase correction of wavefront reconstruction in digital holographic microscopy [J]. Acta Optica Sinica. 2008, 28(1): 56-61.
邸江磊, 赵建林, 范琦, 等. 数字全息显微术中重建物场波前的相位校正 [J]. 光学学报. 2008, 28(1): 56-61.

【62】Di J L, Zhao J L, Sun W W, et al. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting [J]. Optics Communications. 2009, 282(19): 3873-3877.

【63】Di J L, Li Y, Xie M, et al. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry [J]. Applied Optics. 2016, 55(26): 7287-7293.

【64】Di J L, Yu Y, Wang Z M, et al. Quantitative measurement of thermal lensing in diode-side-pumped Nd∶YAG laser by use of digital holographic interferometry [J]. Optics Express. 2016, 24(25): 28185-28193.

【65】Ma C J, Li Y, Zhang J W, et al. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer [J]. Optics Express. 2017, 25(12): 13659-13667.

【66】Li Y, Di J L, Ma C J, et al. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation [J]. Optics Express. 2018, 26(1): 586-593.

【67】Xi T L, Di J L, Li Y, et al. Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry [J]. Optics Express. 2018, 26(22): 28497-28504.

【68】Dou J Z, Xi T L, Ma C J, et al. Measurement of full polarization states with hybrid holography based on geometric phase [J]. Optics Express. 2019, 27(6): 7968-7978.

【69】Hu C Y, Zhong J G, Weng J W. Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes [J]. Journal of Biomedical Optics. 2010, 15(5): 056015.

【70】Li S P, Zhong J G. Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography [J]. Biomedical Optics Express. 2012, 3(12): 3190-3202.

【71】Mandracchia B, Pagliarulo V, Paturzo M, et al. Surface plasmon resonance imaging by holographic enhanced mapping [J]. Analytical Chemistry. 2015, 87(8): 4124-4128.

【72】Zhang J W, Di J L, Li Y, et al. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection [J]. Optics Express. 2015, 23(21): 27328-27334.

【73】Zhang J W, Ma C J, Dai S Q, et al. Transmission and total internal reflection integrated digital holographic microscopy [J]. Optics Letters. 2016, 41(16): 3844-3847.

【74】Xiao C D, Sui S F. Characterization of surface plasmon resonance biosensor [J]. Sensors and Actuators B: Chemical. 2000, 66(1/2/3): 174-177.

【75】Zhang J W, Dai S Q, Ma C J, et al. Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance [J]. Applied Optics. 2017, 56(11): 3223-3228.

【76】Zhang J W, Dai S Q, Zhong J Z, et al. Wavelength-multiplexing surface plasmon holographic microscopy [J]. Optics Express. 2018, 26(10): 13549-13560.

【77】Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology. 2012, 7(11): 699-712.

【78】Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature [J]. Nature Nanotechnology. 2014, 9(4): 273-278.

【79】Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors [J]. Nature Nanotechnology. 2014, 9(5): 372-377.

【80】Dai S Q, Lu H, Zhang J W, et al. Complex refractive index measurement for atomic-layer materials via surface plasmon resonance holographic microscopy [J]. Optics Letters. 2019, 44(12): 2982-2985.

【81】Dai S Q, Zhang J W, Lu H, et al. Integrated digital holographic microscopy based on surface plasmon resonance [J]. Optics Express. 2018, 26(19): 25437-25445.

【82】Zhang J W, Dai S Q, Ma C J, et al. Compact surface plasmon holographic microscopy for near-field film mapping [J]. Optics Letters. 2017, 42(17): 3462-3465.

【83】Lu H, Dai S Q, Yue Z J, et al. Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring [J]. Nanoscale. 2019, 11(11): 4759-4766.

引用该论文

Dai Siqing,Dou Jiazhen,Zhang Jiwei,Di Jianglei,Zhao Jianlin. Digital Holography Based Near-field Imaging and Its Application[J]. Acta Optica Sinica, 2020, 40(1): 0111008

戴思清,豆嘉真,张继巍,邸江磊,赵建林. 基于数字全息术的近场成像与应用[J]. 光学学报, 2020, 40(1): 0111008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF