首页 > 论文 > 中国激光 > 47卷 > 2期(pp:207002--1)

生物组织纤维状结构空间取向的精准表征与应用

Accurate Characterization of Spatial Orientations of Fiber-Like Structures in Biological Tissues and Its Applications

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

纤维状结构是生物组织的一种基本结构形式。疾病的发生和演化常常伴随着纤维状结构空间取向的相应变化。对生物组织内纤维状结构空间取向的定量表征方法和主要应用进行了简单综述,着重介绍了空间取向信息在几种重要疾病模型中的研究进展,包括伤口愈合、骨关节炎、乳腺癌、腹膜癌扩散、脑损伤等,并在特定的人工组织模型中探究了组织结构与功能的关系。对生物组织纤维状结构的高灵敏、高精度描述,为研究疾病的发生和演化提供了新思路和手段,有望实现特定疾病的早期诊断和病理机制的深入理解。最后,对该方法的应用前景进行了展望。

Abstract

Fiber-like structure is one of the basic structures found in biological tissues. The spatial orientations of fiber-like structures change with the initiation and progression of some diseases. In this study, we present a brief overview of quantitative orientation analysis methods for fiber-like structures within biological tissues and main applications of these methods. We especially focus on the research progress of spatial orientation information in important disease models, including wound healing, osteoarthritis, breast cancer, peritoneal metastasis, and brain injury. Additionally, we explore the relations between tissue structure and function via specific engineered tissues. A highly sensitive and highly accurate description of the fiber-like structures within biological tissues serves as a novel method for studying disease initiation and progression, shows potential for early disease diagnosis, and improves our understanding of the mechanisms underlying some disorders. Finally, future potential applications of the orientation analysis methods are explored.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/CJL202047.0207002

所属栏目:生物医学光子学与激光医学

基金项目:国家重点研发计划; 国家自然科学基金; 浙江省自然科学基金; 中央高校基本科研业务费专项资金;

收稿日期:2019-10-08

修改稿日期:2019-12-11

网络出版日期:2020-02-01

作者单位    点击查看

刘智毅:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
孟佳:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
邱建榕:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
韩涛:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
王迪:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
卓双木:福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
丁志华:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027

联系人作者:刘智毅(liuzhiyi07@zju.edu.cn); 丁志华(zh_ding@zju.edu.cn);

备注:国家重点研发计划; 国家自然科学基金; 浙江省自然科学基金; 中央高校基本科研业务费专项资金;

【1】Geiger B, Bershadsky A, Pankov R, et al. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton [J]. Nature Reviews Molecular Cell Biology. 2001, 2(11): 793-805.

【2】Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression [J]. Nature Reviews Cancer. 2002, 2(3): 161-174.

【3】Abbott N J, R?nnb?ck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier [J]. Nature Reviews Neuroscience. 2006, 7(1): 41-53.

【4】Discher D E, Mooney D J, Zandstra P W. Growth factors, matrices, and forces combine and control stem cells [J]. Science. 2009, 324(5935): 1673-1677.

【5】Zamir E, Katz M, Posen Y, et al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts [J]. Nature Cell Biology. 2000, 2(4): 191-196.

【6】Butcher D T, Alliston T, Weaver V M. A tense situation: forcing tumour progression [J]. Nature Reviews Cancer. 2009, 9(2): 108-122.

【7】Lin H X, Zuo N, Zhuo S M, et al. Application of multiphoton microscopy in disease diagnosis [J]. Chinese Journal of Lasers. 2018, 45(2): 0207014.
林宏心, 左宁, 卓双木, 等. 多光子显微技术在医学诊断中的应用 [J]. 中国激光. 2018, 45(2): 0207014.

【8】Li H, Xia X Y, Chen T, et al. Applications of two-photon excitation fluorescence lifetime imaging in tumor diagnosis [J]. Chinese Journal of Lasers. 2018, 45(2): 0207010.
李慧, 夏先园, 陈廷爱, 等. 双光子荧光寿命成像在肿瘤诊断研究中的应用 [J]. 中国激光. 2018, 45(2): 0207010.

【9】Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nature Biotechnology. 2003, 21(11): 1369-1377.

【10】Zemel A, Rehfeldt F. Brown A E X, et al. Optimal matrix rigidity for stress-fibre polarization in stem cells [J]. Nature Physics. 2010, 6(6): 468-473.

【11】Barnes C, Speroni L, Quinn K P, et al. From single cells to tissues: interactions between the matrix and human breast cells in real time [J]. PLoS One. 2014, 9(4): e93325.

【12】Schriefl A J, Zeindlinger G, Pierce D M, et al. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries [J]. Journal of the Royal Society Interface. 2012, 9(71): 1275-1286.

【13】Altendorf H, Decencière E, Jeulin D, et al. Imaging and 3D morphological analysis of collagen fibrils [J]. Journal of Microscopy. 2012, 247(2): 161-175.

【14】Napadow V J, Chen Q, Mai V, et al. Quantitative analysis of three-dimensional-resolved fiber architecture in heterogeneous skeletal muscle tissue using NMR and optical imaging methods [J]. Biophysical Journal. 2001, 80(6): 2968-2975.

【15】Bancelin S, Nazac A, Ibrahim B H, et al. Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging [J]. Optics Express. 2014, 22(19): 22561.

【16】Sivaguru M, Durgam S, Ambekar R, et al. Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging [J]. Optics Express. 2010, 18(24): 24983.

【17】Quinn K P, Georgakoudi I. Rapid quantification of pixel-wise fiber orientation data in micrographs [J]. Journal of Biomedical Optics. 2013, 18(4): 046003.

【18】Lau T Y, Ambekar R, Toussaint K C. Quantification of collagen fiber organization using three-dimensional Fourier transform-second-harmonic generation imaging [J]. Optics Express. 2012, 20(19): 21821-21832.

【19】Liu Z Y, Pouli D, Sood D, et al. Automated quantification of three-dimensional organization of fiber-like structures in biological tissues [J]. Biomaterials. 2017, 116: 34-47.

【20】Liu Z Y, Quinn K P, Speroni L, et al. Rapid three-dimensional quantification of voxel-wise collagen fiber orientation [J]. Biomedical Optics Express. 2015, 6(7): 2294-2310.

【21】Quinn K P, Golberg A, Broelsch G F, et al. An automated image processing method to quantify collagen fibre organization within cutaneous scar tissue [J]. Experimental Dermatology. 2015, 24(1): 78-80.

【22】Quinn K P, Sullivan K E, Liu Z Y, et al. Optical metrics of the extracellular matrix predict compositional and mechanical changes after myocardial infarction [J]. Scientific Reports. 2016, 6: 35823.

【23】Loeser R F, Goldring S R, Scanzello C R, et al. Osteoarthritis: a disease of the joint as an organ [J]. Arthritis & Rheumatism. 2012, 64(6): 1697-1707.

【24】Mingalone C K, Liu Z Y, Hollander J M, et al. Bioluminescence and second harmonic generation imaging reveal dynamic changes in the inflammatory and collagen landscape in early osteoarthritis [J]. Laboratory Investigation. 2018, 98(5): 656-669.

【25】Nieminen M T, Rieppo J, T?yr?s J, et al. T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study [J]. Magnetic Resonance in Medicine. 2001, 46(3): 487-493.

【26】Ambekar R, Lau T Y, Walsh M, et al. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging [J]. Biomedical Optics Express. 2012, 3(9): 2021-2035.

【27】Schnelldorfer T, Ware A L, Sarr M G, et al. Long-term survival after pancreatoduodenectomy for pancreatic adenocarcinoma [J]. Annals of Surgery. 2008, 247(3): 456-462.

【28】Whatcott C J, Diep C H, Jiang P, et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer [J]. Clinical Cancer Research. 2015, 21(15): 3561-3568.

【29】Tang-Schomer M D, White J D, Tien L W, et al. Bioengineered functional brain-like cortical tissue [J]. Proceedings of the National Academy of Sciences of the United States of America. 2014, 111(38): 13811-13816.

【30】Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease [J]. Neuron. 2010, 68(4): 610-638.

【31】Sundarakrishnan A, Zukas H, Coburn J, et al. Bioengineered in vitro tissue model of fibroblast activation for modeling pulmonary fibrosis [J]. ACS Biomaterials Science & Engineering. 2019, 5(5): 2417-2429.

【32】Liu Z Y, Speroni L, Quinn K P, et al. 3D organizational mapping of collagen fibers elucidates matrix remodeling in a hormone-sensitive 3D breast tissue model [J]. Biomaterials. 2018, 179: 96-108.

【33】Dhimolea E, Maffini M V, Soto A M, et al. The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model [J]. Biomaterials. 2010, 31(13): 3622-3630.

【34】Birk J W, Tadros M, Moezardalan K, et al. Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal colonic mucosa [J]. Digestive Diseases and Sciences. 2014, 59(7): 1529-1534.

引用该论文

Liu Zhiyi,Meng Jia,Qiu Jianrong,Han Tao,Wang Di,Zhuo Shuangmu,Ding Zhihua. Accurate Characterization of Spatial Orientations of Fiber-Like Structures in Biological Tissues and Its Applications[J]. Chinese Journal of Lasers, 2020, 47(2): 0207002

刘智毅,孟佳,邱建榕,韩涛,王迪,卓双木,丁志华. 生物组织纤维状结构空间取向的精准表征与应用[J]. 中国激光, 2020, 47(2): 0207002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF