首页 > 论文 > 激光与光电子学进展 > 56卷 > 20期(pp:201502--1)

基于三维激光的图优化即时定位与建图策略

Simultaneous Localization and Mapping Strategy of Graph Optimization Based on Three-Dimensional Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为提高自动驾驶扫地机器人的环境点云重建精度,提出一种基于三维激光的图优化即时定位与建图算法。首先使用扩展卡尔曼滤波融合GPS、惯性测量单元(IMU)、里程计信息得到当前位姿,然后基于3D-NDT配准得到点云变换关系,最后通过构建图优化模型来进行后端优化,将点云位姿构建为图节点,将实时激光点云数据、融合后定位信息与地面参数作为边约束,并求解出点云的优化位姿。结果显示,与其他仅利用激光数据建图的算法相比,本算法改善了点云环境建图结果,提高了建图精度。算法的正确性和高效性得以验证。

Abstract

In order to improve the accuracy of point cloud reconstruction for automatic drive sweeping robots, a simultaneous localization and mapping (SALM) algorithm based on graph optimization is proposed. First, the extended Kalman filter is used to fuse the information of GPS, inertial measurement unit (IMU) and odometer to get the current position. Second, the point cloud transformation relationship is obtained based on 3D-NDT registration. Finally, by constructing point clouds as map nodes, GPS and ground parameters as edge constraints, the back-end optimization is carried out by constructing a map optimization model. The point cloud posture is constructed as a map node, and the real-time laser point cloud data, fusion location information and ground parameters are used as edge constraints, and solve the optimum position and posture of point clouds. The results show that comparing with mapping algorithms that just based on laser data, the proposed algorithm can improve the mapping results of point cloud environment and improve the mapping accuracy. The correctness and efficiency of the strategy in this paper is verified.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:A, doi: 10.3788/LOP5

DOI:10.3788/LOP56.201502

所属栏目:机器视觉

基金项目:中央高校基本科研业务;

收稿日期:2019-03-12

修改稿日期:2019-05-07

网络出版日期:2019-10-01

作者单位    点击查看

张天喜:河海大学机电工程学院, 江苏 常州 213022
周军:河海大学机电工程学院, 江苏 常州 213022
廖华丽:河海大学机电工程学院, 江苏 常州 213022
杨跟:河海大学机电工程学院, 江苏 常州 213022

联系人作者:张天喜(1617709246@qq.com)

备注:中央高校基本科研业务;

【1】Ding S W, Zhang X H, Yu Q F et al. Overview of non-contact 3D reconstruction measurement methods. Laser & Optoelectronics Progress. 54(7), (2017).
丁少闻, 张小虎, 于起峰 等. 非接触式三维重建测量方法综述. 激光与光电子学进展. 54(7), (2017).

【2】Hu S X, Chen C P and Zhang A W. Application of SLAM in vehicle-borne mobile mapping system. Chinese Journal of Lasers. 39(11), (2012).
胡少兴, 陈春朋, 张爱武. 同步定位及地图创建算法在车载移动测绘系统中的应用. 中国激光. 39(11), (2012).

【3】Vlaminck M, Luong H and Philips W. Surface-based GICP. [C]∥2018 15th Conference on Computer and Robot Vision (CRV), May 8-10, 2018, Toronto, ON, Canada. New York: IEEE. 262-268(2018).

【4】Kohlbrecher S, von Stryk O, Meyer J et al. . A flexible and scalable SLAM system with full 3D motion estimation. [C]∥2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, November 1-5, 2011, Kyoto, Japan. New York: IEEE. 155-160(2011).

【5】Magnusson M, Lilienthal A and Duckett T. Scan registration for autonomous mining vehicles using 3D-NDT. Journal of Field Robotics. 24(10), 803-827(2007).

【6】Wang J W, Yang L H, Shi S D et al. Indoor integrated navigation algorithm based on workshop measurement positioning system and lidar. Laser & Optoelectronics Progress. 55(10), (2018).
王金旺, 杨凌辉, 史慎东 等. 基于工作空间测量定位系统和激光雷达的室内组合导航算法研究. 激光与光电子学进展. 55(10), (2018).

【7】Zhang J and Singh S. Low-drift and real-time lidar odometry and mapping. Autonomous Robots. 41(2), 401-416(2017).

【8】Thrun S and Montemerlo M. The graph SLAM algorithm with applications to large-scale mapping of urban structures. The International Journal of Robotics Research. 25(5/6), 403-429(2006).

【9】Erik Nelson. Berkeley localization and mapping [2019-02-15].https:∥github.com/erik-nelson/blam. (0).

【10】Yan G M. Research on vehicle autonomous positioning and orientation system Xi''''an:. Northwestern Polytechnical University. 69-84(2006).
严恭敏. 车载自主定位定向系统研究. 西安: 西北工业大学. 69-84(2006).

【11】Akai N, Morales L Y, Takeuchi E et al. Robust localization using 3D NDT scan matching with experimentally determined uncertainty and road marker matching. [C]∥2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, June 11-14, 2017, CA, USA. New York: IEEE. 1356-1363(2017).

【12】Droeschel D, Schwarz M and Behnke S. Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner. Robotics and Autonomous Systems. 88, 104-115(2017).

【13】Kuemmerle R, Grisetti G, Strasdat H et al. G2o: a general framework for graph optimization. [C]∥2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai, China. New York: IEEE. 3607-3613(2011).

【14】Learning ROS for robotics programming. 23-73(2014).
Martinez A, Fernández E, Martinez A and Fernández E. ROS机器人程序设计. 23-73(2014).

引用该论文

Zhang Tianxi,Zhou Jun,Liao Huali,Yang Gen. Simultaneous Localization and Mapping Strategy of Graph Optimization Based on Three-Dimensional Laser[J]. Laser & Optoelectronics Progress, 2019, 56(20): 201502

张天喜,周军,廖华丽,杨跟. 基于三维激光的图优化即时定位与建图策略[J]. 激光与光电子学进展, 2019, 56(20): 201502

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF