首页 > 论文 > 激光与光电子学进展 > 56卷 > 13期(pp:130002--1)

光束积分激光空间整形技术

Laser Space Shaping Based on Beam Integration

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

许多应用中都需要激光光束强度均匀分布,或者按照设计要求对激光光束的强度相位分布进行特定调制,因此,有必要对各种光束整形技术进行研究。目前,已发展了多种激光光束整形技术,其中光束积分法原理简单,适用性广,因此基于此方法的光束整形技术具有很大的工程价值。主要介绍了基于棱镜、反射镜及微透镜阵列等光学元件的光束积分系统的组成情况,列出了典型整形光路,以及近年来在光束整形方面的研究进展。同时,介绍了在整形过程中上述方法的各自特点。

Abstract

Laser beams with evenly distributed or specifically modulated intensity profiles are required in many practical applications, thereby necessitating theoretical and experimental studies in laser beam shaping techniques. A variety of laser beam shaping methods, wherein the beam integration plays an important role as a result of its simple principle and wide applicability, have been proposed thus far. Therefore, it has great value in engineering. This study introduces the usage of optical components, such as prisms, mirrors, and micro-lens arrays, in beam integration systems. In this paper, the typical optical paths and recent progress are presented along with a discussion of the characteristics of these shaping methods.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.130002

所属栏目:综述

基金项目:中国科学院科研仪器设备研制项目、中国科学院重点部署项目、中国科学院联合基金;

收稿日期:2019-01-04

修改稿日期:2019-01-31

网络出版日期:2019-07-01

作者单位    点击查看

孟晶晶:中国科学院光电研究院计算光学成像技术重点实验室, 北京 100094中国科学院光电研究院, 北京 100094中国科学院大学, 北京 100049
余锦:中国科学院光电研究院, 北京 100094中国科学院大学, 北京 100049
貊泽强:中国科学院光电研究院计算光学成像技术重点实验室, 北京 100094中国科学院光电研究院, 北京 100094中国科学院大学, 北京 100049
王金舵:中国科学院光电研究院计算光学成像技术重点实验室, 北京 100094中国科学院光电研究院, 北京 100094中国科学院大学, 北京 100049
代守军:中国科学院光电研究院计算光学成像技术重点实验室, 北京 100094中国科学院光电研究院, 北京 100094中国科学院大学, 北京 100049
王晓东:中国科学院光电研究院计算光学成像技术重点实验室, 北京 100094中国科学院光电研究院, 北京 100094中国科学院大学, 北京 100049

联系人作者:余锦(jinyu@aoe.cn.com)

备注:中国科学院科研仪器设备研制项目、中国科学院重点部署项目、中国科学院联合基金;

【1】Dickey F and Lizotte T. Laser beam shaping applications. 16-18(2017).

【2】Li Y M, Gong L, Li D et al. Progress in optical tweezers technology. Chinese Journal of Lasers. 42(1), (2015).
李银妹, 龚雷, 李迪 等. 光镊技术的研究现况. 中国激光. 42(1), (2015).

【3】Guo Z H, Liu Z T, Chen Q M et al. Application and progress of laser shaping devices in optical tweezers. Laser & Optoelectronics Progress. 54(9), (2017).
郭志和, 刘泽田, 陈启敏 等. 激光整形器件在光镊中的应用及进展. 激光与光电子学进展. 54(9), (2017).

【4】Oliker V, Doskolovich L L and Bykov D A. Beam shaping with a plano-freeform lens pair. Optics Express. 26(15), 19406-19419(2018).

【5】Yang Z K, Ma X H, Fang J Y et al. Tunable bottle beam of semiconductor laser. Chinese Journal of Lasers. 45(11), (2018).
杨智焜, 马晓辉, 房俊宇 等. 半导体激光可调谐局域空心光束. 中国激光. 45(11), (2018).

【6】Yang X T and Fan W. Spatial laser beam shaping using birefringent lenses. Acta Optica Sinica. 26(11), 1698-1704(2006).
杨向通, 范薇. 利用双折射透镜组实现激光束空间整形. 光学学报. 26(11), 1698-1704(2006).

【7】Veldkamp W B. Laser beam profile shaping with binary diffraction gratings. Optics Communications. 38(5/6), 381-386(1981).

【8】Hajj B, Oudjedi L, Fiche J B et al. Highly efficient multicolor multifocus microscopy by optimal design of diffraction binary gratings. Scientific Reports. 7, (2017).

【9】Yamaguchi S, Kobayashi T, Saito Y et al. Collimation of emissions from a high-power multistripe laser-diode bar with multiprism array coupling and focusing to a small spot. Optics Letters. 20(8), 898-900(1995).

【10】Yamaguchi S and Imai H. Efficient Nd∶YAG laser end-pumped by a 1 cm aperture laser-diode bar with a GRIN lens array coupling. IEEE Journal of Quantum Electronics. 28(4), 1101-1105(1992).

【11】Zheng G X, Du C L, Zhou C et al. Laser diode stack beam shaping by reflective two-wedge-angle prism arrays. Optical Engineering. 44(4), (2005).

【12】Huang Z H, Xiong L L, Liu H et al. Double-cutting beam shaping technique for high-power diode laser area light source. Optical Engineering. 52(10), (2013).

【13】Wu Y L, Dong Z Y, Chen Y Q et al. Beam shaping for kilowatt fiber-coupled diode lasers by using one-step beam cutting-rotating of prisms. Applied Optics. 55(34), 9769-9773(2016).

【14】Shi Z D, Fang L, Fan B et al. Beam shaping system based on a prism array for improving the throughput of a dispersive spectrometer. Applied Optics. 54(10), 2715-2719(2015).

【15】Kagoshima Y, Takano H and Takeda S. Constant-pitch microprism-array optical device for beam condensers in hard X-ray synchrotron radiation beamlines. Journal of Applied Physics. 113(21), (2013).

【16】Zheng C, Li Q Y, Rosengarten G et al. Compact, semi-passive beam steering prism array for solar concentrators. Applied Optics. 56(14), 4158-4167(2017).

【17】Tsuji H, Nakano T, Matsumoto Y et al. Flattop beam illumination for 3D imaging ladar with simple optical devices in the wide distance range. Optical Review. 23(2), 155-160(2016).

【18】Zhou X F, Qi Z M, Luo X Q et al. A method to diverge reflected beam uniformly using cube-corner retroreflector array with dihedral angle tolerances. Acta Physica Sinica. 66(8), (2017).
周晓凤, 戚祖敏, 罗向前 等. 利用含二面角误差的角锥棱镜阵列实现反射光束均匀发散的方法. 物理学报. 66(8), (2017).

【19】Doherty V J. Design of mirrors with segmented conical surfaces tangent to a discontinuous aspheric base. Proceedings of SPIE. 399, 263-271(1983).

【20】David S R, Walker T and Cassarly W J. Faceted reflector design for uniform illumination. Proceedings of SPIE. 3842, 437-446(1998).

【21】Cassarly W J, David S R, Jenkins D G et al. Automated design of a uniform distribution using faceted reflectors. Optical Engineering. 39(7), 1830-1839(2000).

【22】Dagenais D M, Woodroffe J A and Itzkan I. Optical beam shaping of a high power laser for uniform target illumination. Applied Optics. 24(5), 671-675(1985).

【23】Ehlers B, Du K M, Baumann M et al. Beam shaping and fiber coupling of high-power diode laser arrays. Proceedings of SPIE. 3097, 639-644(1997).

【24】Hornbeck L J. Digital light processing for high-brightness high-resolution applications. Proceedings of SPIE. 3013, 27-40(1997).

【25】Ren Y X, Lu R D and Gong L. Tailoring light with a digital micromirror device. Annalen Der Physik. 527(7/8), 447-470(2015).

【26】Liang J Y, Kohn R N, Becker M F et al. 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator. Applied Optics. 48(10), 1955-1962(2009).

【27】Liang J Y, Wu S Y, Kohn R N et al. Bandwidth-limited laser image projection using a DMD-based beam shaper. Proceedings of SPIE. 8254, (2012).

【28】Ding X Y, Ren Y X and Lu R D. Shaping super-Gaussian beam through digital micro-mirror device. Science China Physics, Mechanics & Astronomy. 58(3), 1-6(2015).

【29】Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society of America A. 4(4), 651-654(1987).

【30】Zeng J, Chen Y H, Liu X L et al. Research progress on partially coherent vortex beams. Acta Optica Sinica. 39(1), (2019).
曾军, 陈亚红, 刘显龙 等. 部分相干涡旋光束研究进展. 光学学报. 39(1), (2019).

【31】Gong L, Liu W W, Zhao Q et al. Controllable light capsules employing modified Bessel-Gauss beams. Scientific Reports. 6, (2016).

【32】Ren Y X, Fang Z X and Lu R D. Shaping non-diffracting beams with a digital micromirror device. Proceedings of SPIE. 9761, (2016).

【33】Lakner H K, Duerr P, Dauderstaedt U et al. Design and fabrication of micromirror arrays for UV lithography. Proceedings of SPIE. 4561, 255-264(2001).

【34】Mulder M, Engelen A, Noordman O et al. Performance of FlexRay: a fully programmable illumination system for generation of freeform sources on high NA immersion systems. Proceedings of SPIE. 7640, (2010).

【35】Mulder M, Engelen A, Noordman O et al. Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems. Proceedings of SPIE. 7520, (2009).

【36】McIntyre G, Corliss D, Groenendijk R et al. . Qualification, monitoring, and integration into a production environment of the world''s first fully programmable illuminator. Proceedings of SPIE. 7973, (2011).

【37】Xing S S, Ran Y H, Jiang H B et al. Illumination mode conversion system design based on micromirror array in lithography. Acta Optica Sinica. 35(11), (2015).
邢莎莎, 冉英华, 江海波 等. 基于微反射镜阵列的光刻照明模式变换系统设计. 光学学报. 35(11), (2015).

【38】Du M, Xing T W, Yuan J H et al. Application of micromirror array in beam shaping. Infrared and Laser Engineering. 43(4), 1210-1214(2014).
杜猛, 邢廷文, 袁家虎 等. 微反射镜阵列在光束整形中的应用. 红外与激光工程. 43(4), 1210-1214(2014).

【39】Mitchell K J, Turtaev S, Padgett M J et al. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Optics Express. 24(25), 29269-29282(2016).

【40】Roth M, Heber J and Janschek K. Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks. Optics Letters. 43(12), 2860-2863(2018).

【41】Jia W W, Wang Y F, Huang F et al. Application of fly''s eye lens in beam shaping laser diode array. Chinese Journal of Lasers. 38(2), (2011).
贾文武, 汪岳峰, 黄峰 等. 复眼透镜在激光二极管阵列光束整形中的应用. 中国激光. 38(2), (2011).

【42】Qiao B, Jiang P, Yang H J et al. The elliptical micro-lens array in the application of the LDA beam shaping. Optik. 125(24), 7149-7153(2014).

【43】Lin J, Xu L X, Wang S B et al. Theoretical analysis of lens array for uniform irradiation on target in multimode fiber lasers. Chinese Optics Letters. 12(10), (2014).

【44】Dickey F and Lizotte T. Laser beam shaping: theory and techniques. 281-282(2017).

【45】Büttner A and Zeitner U D. Wave optical analysis of light-emitting diode beam shaping using microlens arrays. Optical Engineering. 41(10), 2393-2400(2002).

【46】Lim C S, Hong M H, Senthil Kumar A et al. Study of field intensity distribution of laser beam propagating through a micro-lens array. Applied Physics A. 107(1), 149-153(2012).

【47】Yin Z Y, Wang Y F, Yin S Y et al. Impact of microlens changes on the homogenization effect of semiconductor laser beam. High Power Laser and Particle Beams. 25(10), 2556-2560(2013).
殷智勇, 汪岳峰, 尹韶云 等. 微透镜变化对半导体激光器光束匀化效果的影响. 强激光与粒子束. 25(10), 2556-2560(2013).

【48】Schreiber P, Kudaev S, Dannberg P et al. Homogeneous LED-illumination using microlens arrays. Proceedings of SPIE. 5942, (2005).

【49】Wang Z X, Zhu G Z, Huang Y et al. Analytical model of microlens array system homogenizer. Optics & Laser Technology. 75, 214-220(2015).

【50】Wippermann F, Zeitner U D, Dannberg P et al. Beam homogenizers based on chirped microlens arrays. Optics Express. 15(10), 6218-6231(2007).

【51】Deng Z F, Yang Q, Chen F et al. High-performance laser beam homogenizer based on double-sided concave microlens. IEEE Photonics Technology Letters. 26(20), 2086-2089(2014).

【52】Yao P H, Chen C H and Chen C H. Low speckle laser illuminated projection system with a vibrating diffractive beam shaper. Optics Express. 20(15), 16552-16566(2012).

【53】Chen E G, Huang J M, Guo T L et al. A laser beam shaper for homogeneous rectangular illumination based on freeform micro lens array. Optoelectronics Letters. 12(4), 253-256(2016).

【54】Zhou Z and Lee S H. Fabrication of an improved gray-scale mask for refractive micro- and meso-optics. Optics Letters. 29(5), 457-458(2004).

【55】Yang J J, Liao Y S and Chen C F. Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process. Optics Communications. 270(2), 433-440(2007).

【56】Zuo H J, Choi D Y, Gai X et al. CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition. Optics Express. 25(4), 3069-3076(2017).

【57】Yu W and Yuan X. Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam lithography. Optics Express. 11(8), 899-903(2003).

【58】Tseng A A. Recent developments in micromilling using focused ion beam technology. Journal of Micromechanics and Microengineering. 14(4), R15-R34(2004).

【59】Saito K, Hayashi H and Nishikawa H. Fabrication of curved PDMS microstructures on silica glass by proton beam writing aimed for micro-lens arrays on transparent substrates. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 306, 284-287(2013).

【60】Huang S Z, Li M J, Shen L G et al. Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan. Micro & Nano Letters. 12(1), 49-52(2017).

引用该论文

Jingjing Meng, Jin Yu, Zeqiang Mo, Jinduo Wang, Shoujun Dai, Xiaodong Wang. Laser Space Shaping Based on Beam Integration[J]. Laser & Optoelectronics Progress, 2019, 56(13): 130002

孟晶晶, 余锦, 貊泽强, 王金舵, 代守军, 王晓东. 光束积分激光空间整形技术[J]. 激光与光电子学进展, 2019, 56(13): 130002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF