首页 > 论文 > 光学学报 > 40卷 > 12期(pp:1210001--1)

改进U型网络的眼底视网膜血管分割方法

AnImproved Method for Retinal Vascular Segmentation in U-Net

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

当前主流的眼底视网膜血管分割方法存在细微血管细粒度特征很难采集和细节容易丢失的问题。为解决这一问题,设计了一种改进U-Net模型算法,该算法将U-Net上下采样中的原始卷积层改为二次循环残差卷积层,提升了特征的使用效率;在解码部分引入多通道注意力模型,改善了低对比度下细小血管的分割效果。该算法在DRIVE (Digital Retinal Images for Vessel Extraction)和STARE (Structured Analysis of the Retina)两个数据库的准确率分别为96.89%和97.96%,敏感度分别为80.28%和82.27%,AUC(Area Under Curve)性能分别为98.41%和98.65%,较现有的先进算法有一定的提升。本文所提算法能有效提高眼底图像细微血管分割准确率。

Abstract

The fine-grained characteristics of blood vessels are difficult to obtain, and the details of the blood vessels are obscured when the current mainstream methods of retinal vascular segmentation are employed. This paper proposes an improved U-Net model algorithm to address these problems. The convolution layer of quadratic-cycle residual difference was used to replace the original convolutional layer in the upper and lower sampling of U-Net to improve the utilization rate of the features. A multichannel attention model was introduced in the decoding part to improve the segmentation effect of small blood vessels with low contrast. Results show that the accuracies of the algorithm in DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structured Analysis of the Retina) databases are 96.89% and 97.96%, the sensitivities are 80.28% and 82.27%, and the AUC performances are 98.41% and 98.65%, respectively. All these parameters are higher than those of existing advanced algorithms. The proposed algorithm can effectively improve the segmentation accuracy of fine blood vessels in fundus images.

中国激光微信矩阵
补充资料

中图分类号:TP391

DOI:10.3788/AOS202040.1210001

所属栏目:图像处理

基金项目:山西省回国留学人员科研教研资助项目;

收稿日期:2020-02-10

修改稿日期:2020-03-23

网络出版日期:2020-06-01

作者单位    点击查看

薛文渲:太原理工大学信息与计算机学院, 山西 晋中 030600
刘建霞:太原理工大学信息与计算机学院, 山西 晋中 030600
刘然:太原理工大学信息与计算机学院, 山西 晋中 030600
袁晓辉:北德克萨斯州大学计算机系, 美国 德克萨斯州 丹顿市 76201

联系人作者:刘建霞(tyljx@163.com)

备注:山西省回国留学人员科研教研资助项目;

【1】Baker M L, Hand P J, Wang J J, et al. Retinal signs and stroke [J]. Stroke. 2008, 39(4): 1371-1379.

【2】Patton N, Aslam T. MacGillivray T, et al. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures [J]. Journal of Anatomy. 2005, 206(4): 319-348.

【3】Wang X H, Xue Q S. Optical design of portable non-mydriatic fundus camera with large field of view [J]. Acta Optica Sinica. 2017, 37(9): 0922001.
王晓恒, 薛庆生. 大视场手持式免散瞳眼底照相机光学设计 [J]. 光学学报. 2017, 37(9): 0922001.

【4】Chaudhuri S, Chatterjee S, Katz N, et al. Detection of blood vessels in retinal images using two-dimensional matched filters [J]. IEEE Transactions on Medical Imaging. 1989, 8(3): 263-269.

【5】Yang Y, Huang S Y, Rao N N. An automatic hybrid method for retinal blood vessel extraction [J]. International Journal of Applied Mathematics and Computer Science. 2008, 18(3): 399-407.

【6】Li Q, You J, Zhang D. Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses [J]. Expert Systems With Applications. 2012, 39(9): 7600-7610.

【7】Zhao Y T, Rada L, Chen K, et al. Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images [J]. IEEE Transactions on Medical Imaging. 2015, 34(9): 1797-1807.

【8】Staal J, Abramoff M D, Niemeijer M, et al. Ridge-based vessel segmentation in color images of the retina [J]. IEEE Transactions on Medical Imaging. 2004, 23(4): 501-509.

【9】Soares J V B, Leandro J J G, Cesar R M, et al. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification [J]. IEEE Transactions on Medical Imaging. 2006, 25(9): 1214-1222.

【10】Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification [J]. IEEE Transactions on Medical Imaging. 2007, 26(10): 1357-1365.

【11】Fraz M M, Remagnino P, Hoppe A, et al. An ensemble classification-based approach applied to retinal blood vessel segmentation [J]. IEEE Transactions on Biomedical Engineering. 2012, 59(9): 2538-2548.

【12】Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017, 39(4): 640-651.

【13】Wang S L, Yin Y L, Cao G B, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning [J]. Neurocomputing. 2015, 149: 708-717.

【14】Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. ∥Navab N: , 2015, 234-241.

【15】Alom M Z, Hasan M, Yakopcic C, for medical image segmentation[EB/OL], et al. -02-19)[2020-01-18] . http: ∥arxiv. 2018, org/abs/1802: 06955.

【16】He K, Zhang X, Ren S, et al. -11-10)[2020-01-18] . https: ∥arxiv. 2015, org/abs/1512: 03385.

【17】Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift . [C]∥32 nd International Conference on International Conference on Machine Learning, July 6-11, 2015, Lille, France. [S.l. : s.n. ]. 2015, 37: 448-456.

【18】Oktay O, Schlemper J, Folgoc L L, et al. -05-20) [2020-01-18] . http: ∥arxiv. 2018, org/abs/1804: 03999.

【19】Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation . [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015. Santiago, Chile. New York: IEEE. 2015, 1520-1528.

【20】Zheng T Y, Tang C, Lei Z K. Multi-scale retinal vessel segmentation based on fully convolutional neural network [J]. Acta Optica Sinica. 2019, 39(2): 0211002.
郑婷月, 唐晨, 雷振坤. 基于全卷积神经网络的多尺度视网膜血管分割 [J]. 光学学报. 2019, 39(2): 0211002.

【21】Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response [J]. IEEE Transactions on Medical Imaging. 2000, 19(3): 203-210.

【22】Kingma D P. -01-30)[2020-01-18] . https: ∥arxiv. 2017, org/abs/1412: 6980.

【23】Lam B S Y, Gao Y S, Liew W C. General retinal vessel segmentation using regularization-based multiconcavity modeling [J]. IEEE Transactions on Medical Imaging. 2010, 29(7): 1369-1381.

【24】Fraz M M, Remagnino P, Hoppe A, et al. Blood vessel segmentation methodologies in retinal images: A survey [J]. Computer Methods and Programs in Biomedicine. 2012, 108(1): 407-433.

【25】You X G, Peng Q M. Yuan, et al. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach [J]. Pattern Recognition. 2011, 44(10/11): 2314-2324.

【26】Azzopardi G, Strisciuglio N, Vento M, et al. Trainable COSFIRE filters for vessel delineation with application to retinal images [J]. Medical Image Analysis. 2015, 19(1): 46-57.

【27】Marín D, Aquino A. Gegundez-Arias M E, et al. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features [J]. IEEE Transactions on Medical Imaging. 2011, 30(1): 146-158.

【28】Roychowdhury S, Koozekanani D D, Parhi K K. Blood vessel segmentation of fundus images by major vessel extraction and sub-image classification [J]. IEEE Journal of Biomedical and Health Informatics. 2014, 19(3): 1118-1128.

【29】Liskowski P, Krawiec K. Segmenting retinal blood vessels with deep neural networks [J]. IEEE Transactions on Medical Imaging. 2016, 35(11): 2369-2380.

【30】Li Q L, Feng B W, Xie L P, et al. A cross-modality learning approach for vessel segmentation in retinal images [J]. IEEE Transactions on Medical Imaging. 2016, 35(1): 109-118.

引用该论文

Xue Wenxuan,Liu Jianxia,Liu Ran,Yuan Xiaohui. AnImproved Method for Retinal Vascular Segmentation in U-Net[J]. Acta Optica Sinica, 2020, 40(12): 1210001

薛文渲,刘建霞,刘然,袁晓辉. 改进U型网络的眼底视网膜血管分割方法[J]. 光学学报, 2020, 40(12): 1210001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF