首页 > 论文 > 激光与光电子学进展 > 56卷 > 14期(pp:141101--1)

基于编码激励和相干系数的内镜超声成像算法

Ultrasound Endoscopic Imaging Algorithm Based on Coded Excitation and Coherence Factor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

合成孔径算法可以实现超声波发射和接收的双向动态聚焦,从而提高成像分辨率,但仍存在图像信噪比低,旁瓣明显等问题。为进一步提高超声成像质量,提出一种基于编码激励和相干系数的合成孔径超声成像(CFCS)算法。首先采用Golay互补序列对作为激励信号,通过增加发射脉冲的编码长度提高图像的信噪比,同时利用序列对良好的自相关特性消除距离旁瓣,提高图像的轴向分辨率。在此基础上引入相干系数,对图像中的横向旁瓣加以抑制。仿真结果表明,相较于基于Barker编码激励的合成孔径算法,CFCS算法可以有效消除距离旁瓣,轴向分辨率提升了47.4%;相较于相干系数合成孔径算法,CFCS算法在轴向分辨率上提升了31%,信噪比提升约18 dB。

Abstract

The synthetic aperture algorithm can achieve bidirectional dynamic focusing of ultrasound transmission and reception, thus improving imaging resolution; however, some problems still exist such as low image signal-to-noise ratios (SNRs) and obvious side lobes. To further improve the quality of ultrasound imaging, this study proposes a synthetic aperture ultrasound imaging algorithm called coherence factor and complementary sequences (CFCS) based on coded excitation and coherence factor. First, a pair of Golay complementary sequences are adopted as the excitation signal, and the SNR of the image is increased by increasing the coding length of the transmitted pulse. Simultaneously, the good autocorrelation characteristics of complementary sequences are exploited to eliminate the distance side lobes; thus, the axial resolution of the image is improved. In addition, a coherence factor is introduced to suppress the lateral side lobes in the image. The simulations indicate that, compared with the synthetic aperture algorithm based on Barker coded excitation, the CFCS algorithm can effectively eliminate the distance side lobes; the axial resolution is also improved by 47.4% using the CFCS algorithm. Furthermore, compared with the synthetic aperture algorithm based on coherence factor, the CFCS algorithm's axial resolution and SNR increase by 31% and ~18 dB, respectively.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.141101

所属栏目:成像系统

基金项目:国家十三五科技支撑计划项目;

收稿日期:2019-01-17

修改稿日期:2019-02-20

网络出版日期:2019-07-01

作者单位    点击查看

邓惟心:天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
陈晓冬:天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
杨晋:天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
吉佳瑞:天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
汪毅:天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
蔡怀宇:天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072

联系人作者:陈晓冬(xdchen@tju.edu.cn)

备注:国家十三五科技支撑计划项目;

【1】Ding G X, Xia H, Liu G Q et al. Magneto-acousto-electrical tomography based on laser-induced ultrasound transducers. Chinese Journal of Lasers. 45(10), (2018).
丁广鑫, 夏慧, 刘国强 等. 基于激光诱导超声换能器的磁声电成像研究. 中国激光. 45(10), (2018).

【2】Chen X D, Li M, Yu F et al. Technology of digital endoscopic ultrasonic imaging. Chinese Journal of Lasers. 36(10), 2557-2560(2009).
陈晓冬, 李明, 俞锋 等. 超声内窥数字成像技术. 中国激光. 36(10), 2557-2560(2009).

【3】Jensen J A, Nikolov S I, Gammelmark K L et al. Synthetic aperture ultrasound imaging. Ultrasonics. 44, e5-e15(2006).

【4】Wu Y T, Gao S K, Zhang D J et al. Medical ultrasound equipment: principle, design and application. 349-353(2012).
伍于添, 高上凯, 张德俊 等. 医学超声设备原理·设计·应用. 349-353(2012).

【5】Szasz T and Vaida M F. Adaptive beamforming with coded excitation in ultrasound imaging. [C]∥2013 E-Health and Bioengineering Conference (EHB), November 21-23, 2013, Iasi, Romania. New York: IEEE. 14029136, (2013).

【6】Zhou H, Wang Y Z and Zheng Y F. The advance of medical ultrasonic coded excitation. Journal of Zhejiang University(Engineering Science). 45(2), 387-391(2011).
周浩, 王友钊, 郑音飞. 医学超声编码激励技术研究进展. 浙江大学学报(工学版). 45(2), 387-391(2011).

【7】Li P C and Li M L. Adaptive imaging using the generalized coherence factor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 50(2), 128-141(2003).

【8】Yen J, Shung K K, Cannata J et al. Mismatched-filter design for biphase-coded pulse for high frequency ultrasound imaging. [C]∥2006 IEEE Ultrasonics Symposium, October 2-6, 2006, Vancouver, Canada. New York: IEEE. 2222-2225(2006).

【9】Zheng C C and Peng H. Ultrasounic imaging based on coded exciting technology and adaptive beamforming. Journal of Electronics & Information Technology. 32(4), 959-962(2010).
郑驰超, 彭虎. 基于编码发射与自适应波束形成的超声成像. 电子与信息学报. 32(4), 959-962(2010).

【10】Bian G Y, Wang Y, Bai B P et al. Phased array imaging algorithm for endoscopic ultrasound based on coded excitation. Laser & Optoelectronics Progress. 55(1), (2018).
卞光宇, 汪毅, 白宝平 等. 基于编码激励的内镜超声相控阵成像算法. 激光与光电子学进展. 55(1), (2018).

【11】Mallart R and Fink M. Adaptive focusing in scattering media through sound-speed inhomogeneities: the van Cittert Zernike approach and focusing criterion. The Journal of the Acoustical Society of America. 96(6), 3721-3732(1994).

【12】Meng D M, Li X D and He X N. Ultrasound imaging algorithm combining eigenspace-based beamforming and spatio-temporal sign coherence factor. Modern Electronics Technique. 41(11), 36-39(2018).
孟德明, 李晓东, 和晓念. 融合空时符号相干和特征空间波束形成的超声成像. 现代电子技术. 41(11), 36-39(2018).

【13】Karaman M and Li P C. O''Donnell M. Synthetic aperture imaging for small scale systems. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 42(3), 429-442(1995).

【14】Li J Y, Shen Z H, Ni X W et al. Laser-ultrasonic non-destructive detection based on synthetic aperture focusing technique. Chinese Journal of Lasers. 45(9), (2018).
李俊燕, 沈中华, 倪晓武 等. 基于合成孔径聚焦技术的激光超声无损检测方法研究. 中国激光. 45(9), (2018).

【15】Li W, Chen X D, Li J K et al. Parallel implementation of synthetic aperture imaging algorithm for endoscopic ultrasound. Laser & Optoelectronics Progress. 54(10), (2017).
李溦, 陈晓冬, 李嘉科 等. 内镜超声合成孔径成像算法的并行实现. 激光与光电子学进展. 54(10), (2017).

【16】Golay M J E. Complementary series. IRE Transactions on Information Theory. 7(2), 82-87(1961).

【17】Misaridis T and Jensen J A. Use of modulated excitation signals in medical ultrasound. Part I: basic concepts and expected benefits. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 52(2), 177-191(2005).

【18】Leavens C, Willams R, Burns P et al. The use of phase codes in ultrasound imaging: SNR gain and bandwidth requirements. Applied Acoustics. 70(10), 1340-1351(2009).

【19】Nowicki A, Litniewski J, Secomski W et al. Estimation of ultrasonic attenuation in a bone using coded excitation. Ultrasonics. 41(8), 615-621(2003).

【20】Xiao Y Z, Chen X D, Xu Y et al. Real-time synthetic-aperture imaging algorithm for ultrasonic endoscopy based on coherence factor. Laser & Optoelectronics Progress. 56(2), (2019).
肖禹泽, 陈晓冬, 徐勇 等. 基于相干系数的实时超声内镜合成孔径成像算法. 激光与光电子学进展. 56(2), (2019).

【21】Wang M Q, Cong S and Zhang S. Pseudo chirp-barker-golay coded excitation in ultrasound imaging. [C]∥2018 Chinese Control and Decision Conference (CCDC), June 9-11, 2018, Shenyang, China. New York: IEEE. 4035-4039(2018).

【22】Fu J, Wei G, Huang Q H et al. Barker coded excitation with linear frequency modulated carrier for ultrasonic imaging. Biomedical Signal Processing and Control. 13, 306-312(2014).

【23】Guo J N. Research on coded excitation technique and its applications in the ultrasound diagnosis Automation & Instrumentation. 2017(6), 224-225(0).
郭佳妮. 编码激励技术在超声诊断中的应用研究 自动化与仪器仪表. 2017(6), 224-225(0).

引用该论文

Weixin Deng, Xiaodong Chen, Jin Yang, Jiarui Ji, Yi Wang, Huaiyu Cai. Ultrasound Endoscopic Imaging Algorithm Based on Coded Excitation and Coherence Factor[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141101

邓惟心, 陈晓冬, 杨晋, 吉佳瑞, 汪毅, 蔡怀宇. 基于编码激励和相干系数的内镜超声成像算法[J]. 激光与光电子学进展, 2019, 56(14): 141101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF