首页 > 论文 > 激光与光电子学进展 > 57卷 > 23期(pp:230003--1)

无人机机载光无线通信研究进展

Recent Advances of UAV Airborne Optical Wireless Communications

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

综述了面向无人机(UAV)领域光无线通信(OWC)的主要研究进展,分别阐述了借助光无线技术在无人机与陆上终端间、无人机与无人机之间以及无人机与卫星之间,实现稳健、宽带通信链路的诸多研究进展与关键使能技术。重点阐述了不同无人机光无线链路配置下的链路建模、参数优化、实验测试。同时,也初步讨论了高速、高可靠无人机机载光无线通信技术在模块化实现、高空平台应用等方面的发展趋势。

Abstract

In this paper, recent research progress of optical wireless communications in unmanned aerial vehicles (UAVs) was reviewed. By means of wireless optical technology, technical challenges and key enabling technologies were also surveyed for implementing robust and wideband communication links between UAV and satellite, UAV and UAV, and UAV and terrestrial terminals. The mechanisms and schemes of modeling, parameter optimization, and experimental testing under different UAV optical wireless link configurations were described in detail. Additionally, the key development trends of high-speed and high-reliability UAV-based wireless optical communication technology in modular implementation, high altitude platforms applications, and others were discussed.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN929.12

DOI:10.3788/LOP57.230003

所属栏目:综述

基金项目:新疆维吾尔自治区自然科学基金面上项目;

收稿日期:2020-04-07

修改稿日期:2020-04-20

网络出版日期:2020-12-01

作者单位    点击查看

丁举鹏:新疆大学信息科学与工程学院信号检测与处理新疆维吾尔自治区重点实验室, 新疆 乌鲁木齐 830046
易芝玲:中国移动通信研究院, 北京 100053
王劲涛:清华大学电子工程系北京信息科学与技术国家研究中心, 北京 100084
李亚平:国网新疆电力有限公司电力调度控制中心, 新疆 乌鲁木齐 830001
张志军:国网新疆电力有限公司电力调度控制中心, 新疆 乌鲁木齐 830001
解鹏:国网新疆电力有限公司电力调度控制中心, 新疆 乌鲁木齐 830001
郭学让:国网新疆电力有限公司电力科学研究院电网技术中心, 新疆 乌鲁木齐 830001
陈习锋:新疆大学信息科学与工程学院信号检测与处理新疆维吾尔自治区重点实验室, 新疆 乌鲁木齐 830046

联系人作者:丁举鹏(jupeng7778@163.com)

备注:新疆维吾尔自治区自然科学基金面上项目;

【1】Li X, Zhang R, Hanzo L. FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks [J]. IEEE Transactions on Communications. 2015, 63(4): 1319-1329.

【2】Hanzo L, Haas H, Imre S, et al. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless [J]. Proceedings of the IEEE. 2012, 100: 1853-1888.

【3】Song X Q, Wang M Y, Xing S, et al. Progress of orthogonal frequency division multiplexing based on visible light communication [J]. Laser & Optoelectronics Progress. 2018, 55(12): 120008.
宋小庆, 王慕煜, 邢松, 等. 基于可见光通信的正交频分复用技术研究进展 [J]. 激光与光电子学进展. 2018, 55(12): 120008.

【4】Jia K J, Zhang S Q. Influence of multiuser interference on performances of direct-current-biased optical orthogonal frequency division multiplexing code division multiple access system for visible light communication [J]. Laser & Optoelectronics Progress. 2019, 56(11): 110604.
贾科军, 张守琴. 多用户干扰对可见光通信直流偏置光正交频分复用码分多址系统性能的影响 [J]. 激光与光电子学进展. 2019, 56(11): 110604.

【5】Yang Y F, Jiang M Z, Zhang Y, et al. Design of full duplex visible light communication system based on single light source [J]. Laser & Optoelectronics Progress. 2019, 56(1): 010603.
杨玉峰, 蒋明争, 张颖, 等. 基于单光源的全双工可见光通信系统设计 [J]. 激光与光电子学进展. 2019, 56(1): 010603.

【6】You C X, Hu Q S, Li S D, et al. Light source distribution for visible light communication in coal mine working face based on position and power co-optimization [J]. Chinese Journal of Lasers. 2019, 46(4): 0406001.
游春霞, 胡青松, 李世党, 等. 基于位置和功率协同优化的煤矿工作面可见光通信光源分布 [J]. 中国激光. 2019, 46(4): 0406001.

【7】Chen Y, Shen Q X, Liu H L. Optimization algorithm of receiver optical power uniformity in indoor visible light communication [J]. Chinese Journal of Lasers. 2018, 45(5): 0506003.
陈勇, 沈奇翔, 刘焕淋. 室内可见光通信中接收光功率均匀性优化方法 [J]. 中国激光. 2018, 45(5): 0506003.

【8】Haas H, Yin L, Wang Y L, et al. What is LiFi? [J]. Journal of Lightwave Technology. 2016, 34(6): 1533-1544.

【9】Ding J, Chih-Lin I, Xu Z. Indoor optical wireless channel characteristics with distinct source radiation patterns [J]. IEEE Photonics Journal. 2016, 8(1): 1-15.Ding J, Chih-Lin I, Xu Z. Indoor optical wireless channel characteristics with distinct source radiation patterns [J]. IEEE Photonics Journal. 2016, 8(1): 1-15.

【10】Ding J, Chih-Lin I, Zhang C, et al. Evaluation of outdoor visible light communications links using actual LED street luminaries [M]. ∥ Zhou J. Biometric Recognition. CCBR 2018. Cham: Springer. 2018, 10996: 572-579.

【11】Zhao Z P, Zhang Z K, Tan J, et al. 200Gb/s FSO WDM communication system empowered by multiwavelength directly modulated TOSA for 5G wireless networks [J]. IEEE Photonics Journal. 2018, 10(4): 1-8.Zhao Z P, Zhang Z K, Tan J, et al. 200Gb/s FSO WDM communication system empowered by multiwavelength directly modulated TOSA for 5G wireless networks [J]. IEEE Photonics Journal. 2018, 10(4): 1-8.

【12】Huang X J, Zhang J A, Liu R P, et al. Airplane-aided integrated networking for 6G wireless: will it work? [J]. IEEE Vehicular Technology Magazine. 2019, 14(3): 84-91.

【13】Yang Y, Chen M Z, Guo C L, with unmanned aerial vehicles, et al. -05-10)[2020-04-27] . https:∥arxiv. 2019, org/abs/1905: 04200.

【14】Dong Y J, Hassan M Z, Cheng J L, et al. An edge computing empowered radio access network with UAV-mounted FSO fronthaul and backhaul: key challenges and approaches [J]. IEEE Wireless Communications. 2018, 25(3): 154-160.

【15】Alzenad M, Shakir M Z, Yanikomeroglu H, et al. FSO-based vertical backhaul/fronthaul framework for 5G wireless networks [J]. IEEE Communications Magazine. 2018, 56(1): 218-224.

【16】Yokota N, Yasaka H. K. Sugiyasu, et al, Motion tolerance for dynamic object recognition using visible light IDs[C]∥ IEEE 7th Global Conference on Consumer Electronics (GCCE), October 12, 2018, Nara, Japan. New York: , 2018, 702-703.

【17】Wu D, Sun X, Ansari A N. An FSO-based drone assisted mobile access network for emergency communications [J]. IEEE Transactions on Network Science and Engineering. 2020, 7(3): 1597-1606.

【18】Dautov K, Kalikulov N, Kizilirmak R C. The impact of various weather conditions on vertical FSO links[C]∥2017 IEEE 11th International Conference on Application of Information and Communication Technologies (AICT), September 20-22, 2017, Moscow, Russia. New York: , 2017, 1-4.

【19】Cruz P J, Fierro R. Towards optical wireless communications between micro unmanned aerial and ground systems[C]∥2015 International Conference on Unmanned Aircraft Systems (ICUAS), June 9-12, 2015, Denver, CO, USA. New York: , 2015, 669-676.

【20】Amantayeva A, Yerzhanova M, Kizilirmak R C. UAV location optimization for UAV-to-vehicle multiple access channel with visible light communication[C]∥2019 Wireless Days (WD), April 24-26, 2019, Manchester, United Kingdom. New York: , 2019, 1-4.

【21】Ukida H, Miwa M, Tanimoto Y, et al. Visual UAV control system using LED panel and on-board camera[C]∥2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), May 6-9, 2013, Minneapolis, MN, USA. New York: , 2013, 1386-1391.

【22】Li L, Zhang R Z, Liao P C, et al. MIMO equalization to mitigate turbulence in a 2-channel 40-gbit/s QPSK free-space optical 100-m round-trip orbital-angular-momentum-multiplexed link between a ground station and a retro-reflecting UAV[C]∥2018 European Conference on Optical Communication (ECOC), September 23-27, 2018, Rome, Italy. New York: , 2018, 1-3.

【23】An J X, He X L, Yang Q Y, et al. Research on the application of the air to ground free space optical communication by small UAV [J]. Optical Communication Technology. 2017, 41(6): 10-13.
安建欣, 何晓垒, 杨乾远, 等. 小型无人机空地无线激光通信的应用研究 [J]. 光通信技术. 2017, 41(6): 10-13.

【24】Yeo C I, Heo Y S, Kang H S, et al. Common-path optical terminals for Gbps full-duplex FSO communications between a ground and UAVs . [C]∥Laser Congress 2019 (ASSL, LAC, LS&C), Vienna. Washington, D.C.: Optical Society of America. 2019, 1-2.

【25】Ramdhan N, Sliti M, Boudriga N. Codeword-based data collection protocol for optical Unmanned Aerial Vehicle networks[C]∥2016 HONET-ICT, October 13-14, 2016, Nicosia, Cyprus. New York: , 2016, 35-39.

【26】Ramdhan N, Sliti M, Boudriga N. A tree-based data collection protocol for optical unmanned aerial vehicle networks [J]. Computers & Electrical Engineering. 2018, 66: 80-97.

【27】Mohammad T D, Seyed M S, Imran S A. Tractable optical channel modeling between UAVs [J]. IEEE Transactions on Vehicular Technology. 2019, 68(12): 11543-11550.

【28】Kaadan A, Refai H H, Lopresti P G. Multi-element FSO transceivers alignment for inter-UAV communications [J]. Journal of Lightwave Technology. 2014, 32(24): 4785-4795.

【29】Chen Y, Wang X, Zhao S H, et al. Research on the performance of UAV aerial OFDM optical communication link [J]. Semiconductor Optoelectronics. 2018, 39(6): 853-857, 862.
陈阳, 王翔, 赵尚弘, 等. 无人机空中OFDM光通信链路性能研究 [J]. 半导体光电. 2018, 39(6): 853-857, 862.

【30】Heng K H, Zhong W D, Cheng T H, et al. Beam divergence changing mechanism for short-range inter-unmanned aerial vehicle optical communications [J]. Applied Optics. 2009, 48(8): 1565-1572.

【31】Chlestil C, Leitgeb E, Schmitt N P, et al. Reliable optical wireless links within UAV swarms[C]∥2006 International Conference on Transparent Optical Networks, June 18-22, 2006, Nottingham, UK. New York: , 2006, 39-42.

【32】Kaadan A, Refai H H. LoPresti P G. On the development of modular optical wireless elements (MOWE)[C]∥2015 IEEE Globecom Workshops (GC Wkshps), December 6-10, 2015, San Diego, CA, USA. New York: , 2015, 1-7.

【33】Dabiri M T. Sadough S M S, Khalighi M A. Channel modeling and parameter optimization for hovering UAV-based free-space optical links [J]. IEEE Journal on Selected Areas in Communications. 2018, 36(9): 2104-2113.

【34】Kaadan A, Zhou D Y, Refai H H, et al. Modeling of aerial-to-aerial short-distance free-space optical links[C]∥2013 Integrated Communications, Navigation and Surveillance Conference (ICNS), April 22-25, 2013, Herndon, VA, USA. New York: , 2013, 1-12.

【35】Sanchez C, Paul S, Sebald J. Lower power antenna design for free space optical communications inside the ariane 5 VEB [C]∥ IEEE International Conference on Wireless for Space and Extreme Environments (WISEE), October 16-18, 2019, Ottawa, ON, Canada. New York: , 2019, 19222355.

【36】Li M, Hong Y F, Zeng C, et al. Investigation on the UAV-to-satellite optical communication systems [J]. IEEE Journal on Selected Areas in Communications. 2018, 36(9): 2128-2138.

【37】Fidler F, Knapek M, Horwath J, et al. Optical communications for high-altitude platforms [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2010, 16(5): 1058-1070.

【38】Perlot N, Duca E, Horwath J, et al. System requirements for optical HAP-satellite links[C]∥2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, July 25-25, 2008, Graz, Austria. New York: , 2008, 72-76.

【39】Fidler F. Optical backhaul links between HAPs and satellites in the multi-gigabit regime[C]∥2008 IEEE Globecom Workshops, November 30 - December 4, 2008, New Orleans, LA, USA. New York: , 2008, 1-5.

引用该论文

Ding Jupeng,I Chih-Lin,Wang Jintao,Li Yaping,Zhang Zhijun,Xie Peng,Guo Xuerang,Chen Xifeng. Recent Advances of UAV Airborne Optical Wireless Communications[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230003

丁举鹏,易芝玲,王劲涛,李亚平,张志军,解鹏,郭学让,陈习锋. 无人机机载光无线通信研究进展[J]. 激光与光电子学进展, 2020, 57(23): 230003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF