高功率激光驱动器光束匀滑技术研究(特邀)
Research of beam smoothing technology in high power laser driver (Invited)
摘要
激光驱动惯性约束聚变的打靶过程中,光场不同空间频率的不均匀性会引起内爆的流体力学不稳定性、印痕效应和激光等离子体不稳定性。这些不稳定过程将最终影响内爆压缩倍率,从而影响到点火。为了控制焦斑不均匀性进而抑制不稳定过程,人们提出了束匀滑技术:通过光场调控控制焦斑分布特性,进而控制束靶耦合过程。束匀滑可分为空间域匀滑和时间域匀滑。空间域匀滑通过控制波前形态获得平整的焦斑包络,降低低频不均匀性。时间域匀滑通过控制光束的相干性减弱激光焦斑中的散斑,进而减弱中高频不均匀性。随着抑制更高激光功率密度条件下激光等离子体相互作用的需求愈发紧迫,涌现出一些新型的束匀滑方法。文中介绍了束匀滑技术在大型激光装置上的使用情况,并对目前提出的各种束匀滑技术进行了总结和分析。
关键词
Abstract
In the process of laser driven inertial confinement fusion, the inhomogeneity of light field with different spatial frequencies will cause the hydrodynamic instability, imprinting and laser plasma instability in implosion. These instabilities will eventually affect the compression ratio of implosion, thus affecting the ignition. In order to control the focal spot nonuniformity and suppress instabilities, beam smoothing technology was proposed to control the beam target coupling process through light field control. Beam smoothing can be divided into spatial smoothing and temporal smoothing. Spatial smoothing can reduce the low-frequency inhomogeneity by controlling the wavefront shape. Temporal smoothing reduces the speckle in the focal spot by controlling the coherence of the laser beam, and then reduces the medium and high frequency inhomogeneity. With the increasing demand for laser-plasmas instability suppression at higher laser power density, some new beam smoothing methods have emerged. The application of beam smoothing technology in large laser facilities was introduced, and the currently proposed beam smoothing technologies were summarized and analyzed.
中图分类号:TN241
所属栏目:先进激光器技术
基金项目:科学挑战计划(TZ2016005);国家自然科学基金(11604317, 11604318, 11804321)
收稿日期:2020-09-01
修改稿日期:--
网络出版日期:2021-01-14
作者单位 点击查看
李福建:中国工程物理研究院上海激光等离子体研究所,上海 201800
季来林:中国工程物理研究院上海激光等离子体研究所,上海 201800
赵晓晖:中国工程物理研究院上海激光等离子体研究所,上海 201800
夏兰:中国工程物理研究院上海激光等离子体研究所,上海 201800
冯伟:中国工程物理研究院上海激光等离子体研究所,上海 201800
刘栋:中国工程物理研究院上海激光等离子体研究所,上海 201800
史海涛:中国工程物理研究院上海激光等离子体研究所,上海 201800
刘佳妮:中国工程物理研究院上海激光等离子体研究所,上海 201800
饶大幸:中国工程物理研究院上海激光等离子体研究所,上海 201800
崔勇:中国工程物理研究院上海激光等离子体研究所,上海 201800
马伟新:中国工程物理研究院上海激光等离子体研究所,上海 201800
隋展:中国工程物理研究院上海激光等离子体研究所,上海 201800
【1】S Skupsky and K Lee. Uniformity of energy deposition for laser driven fusion. J Appl Phys. 54(7), 3662-3671(1983).
【2】M Desselberger, O Willi and M Savage. Measurement of the Rayleigh-Taylor instability in targets driven by optically smoothed laser beams. Phys Rev Lett. 65(24), 2997-3000(1990).
【3】S Hu, D T Michel and A K Davis. Understanding the effects of laser imprint on plastic-target implosions on OMEGA. Phys Plasmas. 23(10), (2016).
【4】J Lindl, O Landen and J Edwards. Review of the national ignition campaign 2009-2012. Phys Plasmas. 21(2), (2014).
【5】D Eimerl, S Skupsky and J Myatt. A stardriver-class laser achieving 1 % beam uniformity in 1 ns. Journal of Fusion Energy. 35(2), 459-469(2016).
【6】S Dixit, M Feit and M Perry. Designing fully continuous phase screens for tailoring focal-plane irradiance profiles. Opt Lett. 21, 1715-7(1996).
【7】Menapace J, Dixit S, Genin F, et al. Magheological finishing f imprinting continuous phase plate structure onto optical surfaces[C]SPIE, 2004, 5273: 220230.
【8】Y Kato, K Mima and N Miyanaga. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys Rev Lett. 53(11), 1057-1060(1984).
【9】R W Gerchberg and W Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 35, 237-250(1971).
【10】S N Dixit, J K Lawson and K R Manes. Kinoform phase plates for focal plane irradiance profile control. Opt Lett. 19(6), 417-419(1994).
【11】Y Lin, T Kessler and G Lawrence. Distributed phase plates for super-Gaussian focal-plane irradiance profiles. Opt Lett. 20, 764-766(1995).
【12】J Neauport, X Ribeyre and J Daurios. Design and optical characterization of a large continuous phase plate for Laser Integration Line and Laser Megajoule facilities. Appl Opt. 42(13), 2377-2382(2003).
【13】J A MarozasJ A Marozas. Fourier transform-based continuous phase-plate design technique: a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility. JOSA A. 24(1), (2007).
【14】J A Marozas, T J B Collins and J D Zuegel. Continuous distributed phase-plate advances for high-energy laser systems. Journal of Physics: Conference Series. (2016).
【15】Goodman J W. Statistical Optics[M]. Newyk: John Wiley & Sons, 2015.
【16】Ping Li, Chi Ma and Jingqin Li. Design of continuous phase plates for controlling spatial spectrum of focal spot. High Power Laser and Particle Beams. 20(7), (2008).
【17】Z M Lei, X Y Sun and F N Lv. Application of optical diffraction method in designing phase plates. Chinese Physics B. 25(11), (2016).
【19】X Deng, X Liang and Z Chen. Uniform illumination of large targets using a lens array. Appl Opt. 25(3), 377-381(1986).
【21】R S Craxton, K S Anderson and T R Boehly. Direct-drive inertial confinement fusion: A review. Phys Plasmas. 22(11), (2015).
【22】M Campbell, V Goncharov and T Sangster. Laser-direct-drive program: Promise, challenge, and path forward. Matter Radiat Extrem. 2(2), 1-18(2017).
【23】S Skupsky, R W Short and T Kessler. Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light. J Appl Phys. 66(8), 3456-3462(1989).
【24】Dong Yang, Zhichao Li and Sanwei Li. Laser plasma instability in indirect-drive inertial confinement fusion. Scientia Sinica Physica, Mechanica & Astronomica. 48(6), 21-36(2018).
【25】O Willi, T Afshar-Rad and S Coe. Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques. Physics of Fluids B: Plasma Physics. 2(6), (1990).
【26】S Regan, J Marozas and S Craxton. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams. J Opt Soc Am B-Opt Physics. 22(5), (2005).
【27】R H Lehmberg, A J Schmitt and S E Bodner. Theory of induced spatial incoherence. J Appl Phys. 62(7), 2680-2701(1987).
【28】S Regan, J Marozas and J Kelly. Experimental investigation of smoothing by spectral dispersion. J Opt Soc Am B-Opt Physics. 17, 1483-1489(2000).
【29】F Li, Y Gao and X Zhao. Induced spatial incoherence combined with continuous phase plate for the improved beam smoothing effect. Opt Eng. 57(6), (2018).
【30】K Tsubakimoto, M Nakatsuka and H Nakano. Suppression of interference speckles produced by a random phase plate, using a polarization control plate. Opt Commun. 91(1-2), 9-12(1992).
【31】J Fuchs, C Labaune and S Depierreux. Modification of spatial and temporal gains of stimulated Brillouin and Raman scattering by polarization smoothing. Phys Rev Lett. 84(14), 3089-3092(2000).
【32】J E RothenbergJ E Rothenberg. Polarization beam smoothing for inertial confinement fusion. J Appl Phys. 87, 3654-3662(2000).
【33】Y Wang, F Wang and Y Zhang. Polarization smoothing for single beam by a nematic liquid crystal scrambler. Appl Opt. 56, (2017).
【34】M Spaeth, K Manes and D Kalantar. Description of the NIF Laser. Fusion Science and Technology. 69, 25-145(2016).
【35】W Zheng, X Wei and Q Zhu. Laser performance upgrade for precise ICF experiment in SG-Ⅲ Laser Facility. Matter Radiat Extrem. 2(5), 243-255(2017).
【36】S Skupsky and T Kessler. Speckle‐free phase plate (diffuser) for far‐field applications. J Appl Phys. 74, 4310-4316(1993).
【37】Dainty J. Laser Speckle Related Phenomena[M]. New Yk: SpringerVerlag Berlin Heidelberg 1975.
【38】D Munro, S Dixit and A Langdon. Polarization smoothing in a convergent beam. Appl Opt. 43, 6639-47(2005).
【39】X Huang, H Jia and W Zhou. Experimental demonstration of polarization smoothing in a convergent beam. Appl Opt. 54, (2015).
【41】R H Lehmberg and S P Obenschain. Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt Commun. 46(1), 27-31(1983).
【42】X Zhao, Y Gao and F Li. Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence. Appl Opt. 58(8), 2121-2126(2019).
【43】S P Obenschain, C J Pawley and A N Mostovych. Reduction of Raman scattering in a plasma to convective levels using induced spatial incoherence. Phys Rev Lett. 62(7), 768-771(1989).
【44】F Li, Y Gao and X Zhao. Experiment and theory of beam smoothing using induced spatial incoherence with a lens array. Appl Opt. 59(10), 2976-2982(2020).
【45】D Veron, H Ayral and C Gouedard. Optical spatial smoothing of Nd-glass laser beam. Opt Commun. 65(1), 42-46(1988).
【46】P Donnat, C Gouédard and D Veron. Induced spatial incoherence and nonlinear effects in Nd: glass amplifiers. Opt Lett. 17(5), 331-333(1992).
【47】S P Obenschain, S E Bodner and D Colombant. The Nike KrF laser facility: Performance and initial target experiments. Phys Plasmas. 3(5), 2098-2107(1996).
【48】Xiang Y, Star G, Tong X, et al. Beamsmoothing investigation on "Heaven I"art. no. 62795Z[C]SPIE, 2007, 6279: 62795Z.
【49】H Nakano, K Tsubakimoto and N Miyanaga. Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd: glass laser system. J Appl Phys. 73(5), 2122-2131(1993).
【50】Bingjie Zhou, Zheqiang Zhong and Bin Zhang. Influence of beam moving characteristics on smoothing effect of focal spot. Acta Physica Sinica. 61(21), (2012).
【52】Rothenberg J. Twodimensional beam smoothing by spectral dispersion f directdrive inertial confinement fusion[C]SPIE, 1995, 2633.
【53】G Miyaji, N Miyanaga and S Urushihara. Three-directional spectral dispersion for smoothing of a laser irradiance profile. Opt Lett. 27, 725-7(2002).
【54】Marozas J, Zuegel J, Collins T. Alternative laserspecklesmoothing schemes f NIF directdriveignition designs[C]49th Annual Meeting of the Division of Plasma Physics, 2007.
【55】Yuliang Zhou, Zhzn Sun and Lanqin Liu. Research on beam smoothing technology for high-oower laser system. Laser & Optoelectronics Progress. 41-48(2011).
【56】Kelly J, Shvydky A, Marozas J, et al. Simulations of the propagation of multipleFM smoothing by spectral dispersion on OMEGA EP[C]SPIE, 2013, 8602: 86020D.
【57】P A Holstein, M André and M Casanova. Target design for the LMJ. Applied Physics. 1, 693-704(2000).
【58】M Duluc, D Penninckx and P Loiseau. Comparison of longitudinal and transverse smoothing by spectral dispersion on stimulated Brillouin backscattering in inertial confinement fusion plasmas. Phys Plasmas. 26(4), (2019).
【59】R Zhang, X Zhang and Z Sui. Research on target uniform irradiation method using linearly modulated light and special grating dispersion. Opt Laser Technol. 43(7), 1073-1077(2011).
【60】D Eimerl, E M Campbell and W F Krupke. StarDriver: a flexible laser driver for inertial confinement fusion and high energy density physics. Journal of Fusion Energy. 33(5), 476-488(2014).
【61】D Eimerl, S Skupsky and M Campbell. StarDriver: Recent results on beam smoothing and LPI mitigation. Journal of Physics: Conference Series. 717, (2016).
【62】D EimerlD Eimerl. StarDriver: recent results on beam smoothing and 2ωpe mitigation. Journal of Lasers, Optics & Photonics. 3(1), (2016).
【63】Zheqiang Zhong, Bingjie Zhou and Rong Ye. A novel scheme of beam smoothing using multi-central frequency and multi-color smoothing by spectral dispersion. Acta Physica Sinica. 63(3), (2014).
【64】Z Zhong, P Hou and B Zhang. Radial smoothing for improving laser-beam irradiance uniformity. Opt Lett. 40, (2015).
【65】P Hou, Z Zhong and B Zhang. Analysis and optimization of radial smoothing based on optical Kerr effect for irradiation improvement. Opt Laser Technol. 85, 48-54(2016).
【66】X Weng, T Li and Z Zhong. Analysis of illumination uniformity affected by small-scale self-focusing of a pump beam in the radial smoothing scheme. Appl Opt. 56, (2017).
【67】Z Zhong, M Yi and Z Sui. Ultrafast smoothing scheme for improving illumination uniformities of laser quads. Opt Lett. 43, (2018).
【68】Boyu Tian, Zheqiang Zhong and Zhan Sui. Ultrafast azimuthal beam smoothing scheme based on vortex beam. Acta Physica Sinica. 68(2), (2019).
【70】Hao Xiong, Zheqiang Zhong and Bin Zhang. Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad. Acta Physica Sinica. 69(6), (2020).
【71】M Yi, Z Zhong and B Zhang. Combined implementation of smoothing technologies for improving illumination uniformity of laser quad in multi-directions. Journal of Modern Optics. 66, 1-8(2019).
【73】Afeyan B, Hüller S. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration Delay (STUD pulses) f ICF IFE[C]EPJ Web of Conferences, 2012: 59.
【74】Afeyan B, Hüller S. Optimal control of laserplasma instabilities using Spike Trains of Uneven Duration Delay: STUD pulses[C]IEEE International Conference on Plasma Science, 2013, arXiv:1304.3960
【75】Hüller S, Afeyan B. Simulations of drastically reduced SBS with laser pulses composed of a Spike Train of Uneven Duration Delay (STUD pulses)[C]EPJ Web of Conferences, 2012: 59.
【76】B Albright, L Yin and B Afeyan. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using Spike Trains of Uneven Duration and Delay: STUD pulses. Phys Rev Lett. 64(4), (2013).
【77】Y Li, S Wang and J Xu. Precise manipulation on spike train of uneven duration or delay pulses with a time grating system. Opt Express. 23, (2015).
【78】Kruschwitz B, Kelly J, Drer C, et al. Commissioning of a multiplefrequency modulation smoothing by spectral dispersion demonstration system on OMEGA EP[C]SPIE, 2013, 8602: 86020E.
【79】M Hohenberger, A Shvydky and J Marozas. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion. Physics of Plasmas. 23(9), (2016).
【80】S Zhou, Z Lin and X Jiang. Beam smoothing by lens array with spectral dispersion. Opt Commun. 272(1), 186-191(2007).
【81】JiangY, Wu R, Zhou S, et al. Perfmance of smoothing by spectral dispersion combined with distributed phase plate on SGII[C]SPIE, 2013, 8904: 890403.
【83】Xiujuan Jiang, Shenlei Zhou and Zunqi Lin. Improving of the irradiation uniformity on targets with a diffraction-weakened lens array and spectral dispersion smoothing. Acta Physica Sinica. 55(11), (2006).
【84】Beau V, Valla D, Daurios J, et al. Metrology of focusing gratings continuous phase plates f LIL LMJ lasers[C]SPIE, 2004, 5252.
【85】C Pawley, K Gerber and R Lehmberg. Measurements of laser-imprinted perturbations and Rayleigh–Taylor growth with the Nike KrF laser. Phys Plasmas. 4, 1969-1977(1997).
【86】Y Gao, Y Cui and L Ji. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat Extrem. 5(6), (2020).
【87】D Rao, Y Gao and Y Cui. 1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control. Opt Laser Technol. 122, (2020).
【88】Y Cui, Y Gao and D Rao. High-energy low-temporal-coherence instantaneous broadband pulse system. Opt Lett. 44(11), 2859-2862(2019).
【89】L Ji, X Zhao and D Liu. High-efficiency second-harmonic generation of low-temporal-coherent light pulse. Opt Lett. 44(17), 4359-4362(2019).
【90】X Zhao, L Ji and D Liu. Second-harmonic generation of temporally low-coherence light. APL Photonics. 5(9), (2020).
引用该论文
Yanqi Gao,Fujian Li,Lailin Ji,Xiaohui Zhao,Lan Xia,Wei Feng,Dong Liu,Haitao Shi,Jiani Liu,Daxing Rao,Yong Cui,Weixin Ma,Zhan Sui. Research of beam smoothing technology in high power laser driver (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201074-20201074
高妍琦,李福建,季来林,赵晓晖,夏兰,冯伟,刘栋,史海涛,刘佳妮,饶大幸,崔勇,马伟新,隋展. 高功率激光驱动器光束匀滑技术研究(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201074-20201074