首页 > 论文 > 光学学报 > 40卷 > 2期(pp:0228001--1)

面向高光谱影像分类的空间正则化流形鉴别分析方法

Spatially-Regularized Manifold Discriminant Analysis Algorithm for Hyperspectral Image Classification

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统高光谱影像特征提取算法大多仅考虑光谱信息或提取空间信息不够精细的问题,提出了一种监督空间正则化流形鉴别分析(SSRMDA)算法,以提高遥感地物的分类性能。该算法首先利用样本数据的标签信息构建谱域类内图和类间图,以揭示高光谱数据潜在的非线性流形结构;然后构建空域类内图,并将空间信息以正则化方式与光谱信息融合,实现谱-空信息的有效融合,并可在低维空间内使类内数据更加聚集,增强嵌入数据的可分性。在Indian Pines和Washington DC Mall数据集上的实验表明,所提算法的总体分类精度分别为91.58%和96.67%,说明所提算法有效提升了地物分类能力,尤其在小样本下的优势更为明显,更有利于实际应用。

Abstract

Traditional feature extraction algorithms consider only spectral information in the hyperspectral image (HSI) and cannot extract fine spatial information. To solve this problem, this paper proposes a supervised spatially-regularized manifold discriminant analysis (SSRMDA) algorithm to improve the classification performance of ground objects in the HSI. The SSRMDA algorithm firstly constructs a spectral-domain intraclass image and an interclass image by using the label information of training samples, which reveals the potential nonlinear manifold structure of hyperspectral data. Based on that, a spatial-domain intraclass image is constructed, and it combines the spectral information of HSI by regularization to realize the effective fusion of spectral-spatial information. In low-dimensional space, the intraclass data in low dimensional space becomes more clustered and the separability of embedded features is enhanced. Experiments on the Indian Pines and Washington DC Mall datasets show that the overall classification accuracy of the SSRMDA algorithm reaches 91.58% and 96.67%, respectively, which denotes that the proposed algorithm effectively improves the classification ability of ground objects. Compared with other feature extraction algorithms, the proposed algorithm is effective in practical applications, especially when a small number of training samples are available.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751.1

DOI:10.3788/AOS202040.0228001

所属栏目:遥感与传感器

基金项目:重庆市基础研究与前沿探索项目、重庆市研究生科研创新项目;

收稿日期:2019-07-18

修改稿日期:2019-09-06

网络出版日期:2020-02-01

作者单位    点击查看

黄鸿:重庆大学光电技术及系统教育部重点实验室, 重庆 400044
王丽华:重庆大学光电技术及系统教育部重点实验室, 重庆 400044
石光耀:重庆大学光电技术及系统教育部重点实验室, 重庆 400044

联系人作者:黄鸿(hhuang@cqu.edu.cn)

备注:重庆市基础研究与前沿探索项目、重庆市研究生科研创新项目;

【1】Zhang Y, Kang X D, Li S T, et al. Feature extraction from hyperspectral images using learned edge structures [J]. Remote Sensing Letters. 2019, 10(3): 244-253.

【2】Cheng B Z, Zhao C H, Zhang L L, et al. Joint spatial preprocessing and spectral clustering based collaborative sparsity anomaly detection for hyperspectral images [J]. Acta Optica Sinica. 2017, 37(4): 0428001.
成宝芝, 赵春晖, 张丽丽, 等. 联合空间预处理与谱聚类的协同稀疏高光谱异常检测 [J]. 光学学报. 2017, 37(4): 0428001.

【3】Li F Y, Huo H T, Bai J, et al. Hyperspectral target detection based on sparse representation and adaptive model [J]. Acta Optica Sinica. 2018, 38(12): 1228004.
李非燕, 霍宏涛, 白杰, 等. 基于稀疏表示和自适应模型的高光谱目标检测 [J]. 光学学报. 2018, 38(12): 1228004.

【4】Zhang C K, Han M. Spectral-spatial joint classification of hyperspectral image with edge-preserving filtering [J]. Acta Automatica Sinica. 2018, 44(2): 280-288.
张成坤, 韩敏. 基于边缘保持滤波的高光谱影像光谱-空间联合分类 [J]. 自动化学报. 2018, 44(2): 280-288.

【5】Peng J T, Sun W W, Du Q. Self-paced joint sparse representation for the classification of hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing. 2019, 57(2): 1183-1194.

【6】Cao J Y, Wang B. Embedding learning on spectral-spatial graph for semisupervised hyperspectral image classification [J]. IEEE Geoscience and Remote Sensing Letters. 2017, 14(10): 1805-1809.

【7】Hou B H, Yao M L, Wang R, et al. Spatial-spectral semi-supervised local discriminant analysis for hyperspectral image classification [J]. Acta Optica Sinica. 2017, 37(7): 0728002.
侯榜焕, 姚敏立, 王榕, 等. 面向高光谱图像分类的空谱半监督局部判别分析 [J]. 光学学报. 2017, 37(7): 0728002.

【8】Kang X D, Xiang X L, Li S T, et al. PCA-based edge-preserving features for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing. 2017, 55(12): 7140-7151.

【9】Bandos T V, Bruzzone L, Camps-Valls G. Classification of hyperspectral images with regularized linear discriminant analysis [J]. IEEE Transactions on Geoscience and Remote Sensing. 2009, 47(3): 862-873.

【10】Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science. 2000, 290(5500): 2323-2326.

【11】Samat A, Gamba P, Liu S C, et al. Jointly informative and manifold structure representative sampling based active learning for remote sensing image classification [J]. IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(11): 6803-6817.

【12】He X F, Niyoji P. Locality preserving projections . [C]∥Advances in Neural Information Processing System, December 13-18, 2004, Vancouver, British Columbia, Canada. Canada: NIPS. 2004, 153-160.

【13】Xu D, Yan S C, Tao D C, et al. Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval [J]. IEEE Transactions on Image Processing. 2007, 16(11): 2811-2821.

【14】Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis [J]. Journal of Machine Learning Research. 2007, 8: 1027-1061.

【15】Fauvel M, Tarabalka Y, Benediktsson J A, et al. Advances in spectral-spatial classification of hyperspectral images [J]. Proceedings of the IEEE. 2013, 101(3): 652-675.

【16】Feng Z X, Yang S Y, Wang S G, et al. Discriminative spectral-spatial margin-based semisupervised dimensionality reduction of hyperspectral data [J]. IEEE Geoscience and Remote Sensing Letters. 2015, 12(2): 224-228.

【17】Zhou Y C, Peng J T. Chen C L P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing. 2015, 53(2): 1082-1095.

【18】Hou B H, Yao M L, Jia W M, et al. Spatial-spectral discriminant analysis for hyperspectral image classification [J]. Optics and Precision Engineering. 2018, 26(2): 450-460.
侯榜焕, 姚敏立, 贾维敏, 等. 面向高光谱图像分类的空谱判别分析 [J]. 光学精密工程. 2018, 26(2): 450-460.

【19】Liu M Y, Tuzel O, Ramalingam S, et al. Entropy rate superpixel segmentation . [C]∥CVPR 2011, June 20-25, 2011, Colorado Springs, CO, USA. New York: IEEE. 2011, 2097-2104.

【20】Luo F L, Huang H, Duan Y L, et al. Local geometric structure feature for dimensionality reduction of hyperspectral imagery [J]. Remote Sensing. 2017, 9(8): 790.

引用该论文

Huang Hong,Wang Lihua,Shi Guangyao. Spatially-Regularized Manifold Discriminant Analysis Algorithm for Hyperspectral Image Classification[J]. Acta Optica Sinica, 2020, 40(2): 0228001

黄鸿,王丽华,石光耀. 面向高光谱影像分类的空间正则化流形鉴别分析方法[J]. 光学学报, 2020, 40(2): 0228001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF