首页 > 论文 > 红外与激光工程 > 49卷 > 12期(pp:20201066-20201066)

光子集成混沌半导体激光器研究进展(特邀)

Progress in photonic integrated chaotic semiconductor laser (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

混沌激光具有宽频谱、类噪声、低相干等特性,在保密光通信、高速随机数、混沌激光雷达、混沌光时域反射仪和分布式光纤传感等领域具有重要的应用价值。光子集成混沌激光器是混沌激光应用的核心器件,具有体积小、性能稳定、成本低等优点。综述了近十年来光子集成混沌半导体激光器的进展及其主要应用。首先介绍了混沌半导体激光器的集成方式;接着介绍了光子集成混沌半导体激光器的分类,根据其扰动方式讨论了直腔单反馈、多腔反馈、环形腔反馈、二维外腔反馈、互注入等结构,并对比分析了各自的优势与输出特性;然后介绍了光子集成混沌半导体激光器在光时域反射仪、保密光通信和高速随机数产生等方面的应用;最后,讨论了光子集成混沌激光器的关键集成技术、时延特征抑制及间歇混沌的特性。

Abstract

Chaotic laser has been widely applied in the fields of secure optical communication, random number generation, chaotic lidar, chaotic optical time domain reflector and distributed optical fiber sensing due to its characteristics of wide-spectrum, noise-like, low-coherence and so on. Photonic integrated chaotic semiconductor laser is a kind of chaotic laser which is small in size, stable and low-cost. The progress of photonic integrated chaotic semiconductor laser and its main applications in recent ten years were reviewed. Firstly, the photonic integrated methods of chaotic semiconductor laser were introduced. Then, the classification of photonic integrated chaotic semiconductor lasers was demonstrated. According to the perturbation mode, the external cavity structures including straight cavity, multiple-cavity, ring cavity, two-dimensional cavity and mutual injection were discussed. The advantages and characteristics of these devices were compared. Furthermore, the applications of photonic integrated chaotic semiconductor lasers in optical time domain reflectometer, secure optical communication and random number generation were introduced. Finally, the key integration techniques, time delay signature and intermittent chaos in photonic integrated chaotic laser were discussed.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN242

DOI:10.3788/IRLA20201066

所属栏目:先进激光器技术

基金项目:国家自然科学基(61527819,61875146);山西省重点研发计划(201803D121064,201903D121177);山西省回国留学人员科研资助项目(2017-052);山西省青年基金(201801D221187);“三晋学者”特聘教授(专家)支持计划;山西省高等学校科技成果转化培育项目资)

收稿日期:2020-09-28

修改稿日期:--

网络出版日期:2021-01-14

作者单位    点击查看

柴萌萌:太原理工大学 新型传感器与智能控制教育部重点实验室,山西 太原 030024;太原理工大学 物理与光电工程学院,山西 太原 030024
乔丽君:太原理工大学 新型传感器与智能控制教育部重点实验室,山西 太原 030024
张明江:太原理工大学 新型传感器与智能控制教育部重点实验室,山西 太原 030024;太原理工大学 物理与光电工程学院,山西 太原 030024
卫晓晶:太原理工大学 新型传感器与智能控制教育部重点实验室,山西 太原 030024;太原理工大学 物理与光电工程学院,山西 太原 030024
杨强:太原理工大学 新型传感器与智能控制教育部重点实验室,山西 太原 030024
徐红春:武汉光迅科技股份有限公司,湖北 武汉 430205

【1】T H MaimanT H Maiman. Stimulated optical emission in fluorescent solids. I. Theoretical considerations. Physical Review. 123(4), 1145-1150(1961).

【2】P A Franken, A E Hill and C W Peters. Generation of optical harmonics. Physical Review Letters. 7(4), 118-119(1961).

【3】H HakenH Haken. Analogy between higher instabilities in fluids and lasers. Physics Letters A. 53(1), 77-78(1975).

【4】Y P Xu, M J Zhang and L Zhang. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced distributed feedback. Optics Letters. 42(20), 4107-4110(2017).

【5】D M Wang, L S Wang and Y Y Guo. Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser. Optics Express. 27(3), 3065-3073(2019).

【6】N Jiang, C Wang and C P Xue. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens. Optics Express. 25(13), 14359-14367(2017).

【7】Q C Zhao and H X Yin. Performance analysis of orthogonal optical chaotic division multiplexing utilizing semiconductor lasers. Optics and Laser Technology. 47, 208-213(2013).

【8】N Oliver, M C Soriano and D W Sukow. Fast random bit generation using a chaotic laser: approaching the information theoretic limit. IEEE Journal of Quantum Electronics. 49(11), 910-918(2013).

【9】F Y Lin and J M Liu. Chaotic lidar. IEEE Journal of Selected Topics in Quantum Electronics. 10(5), 991-997(2004).

【10】Y H Wang, M J Zhang and J Z Zhang. Millimeter-Level-Spatial-Resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser. Journal of Lightwave Technology. 37(15), 3706-3712(2019).

【11】P J Urban, A Getaneh and der Weid J P von. Detection of fiber faults in passive optical networks. Journal of Optical Communications and Networking. 5(11), 1111-1121(2013).

【12】M J Zhang, T G Liu and A B Wang. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser. Optics Letters. 36(6), 1008-1010(2011).

【13】A Argyris, M Hamacher and K E Chlouverakis. Photonic integrated device for chaos applications in communications. Physical Review Letters. 100(19), (2008).

【14】T Sasaki, I Kakesu and Y Mitsui. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution. Optics Express. 25(21), (2017).

【15】K E Chlouverakis, A Argyris and A Bogris. Hurst exponents and cyclic scenarios in a photonic integrated circuit. Physical Review E. 78(6), (2008).

【16】J P Toomey, D M Kane and C McMahon. Integrated semiconductor laser with optical feedback: transition from short to long cavity regime. Optics Express. 23(14), 18754-18762(2015).

【17】J P Toomey, A Argyris and C McMahon. Time-scale independent permutation entropy of a photonic integrated device. Journal of Lightwave Technology. 35(1), 88-95(2017).

【18】J G Wu, L J Zhao and Z M Wu. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Optics Express. 21(20), (2013).

【19】L Yu, D Lu and B Pan. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation. Journal of Lightwave Technology. 32(20), 3595-3601(2014).

【20】S Bauer, O Brox and J Kreissl. Nonlinear dynamics of semiconductor lasers with active optical feedback. Physical Review E. 69(2), (2004).

【21】B W Pan, D Lu and L J Zhao. Broadband chaos generation using monolithic dual-mode laser with optical feedback. IEEE Photonics Technology Letters. 27(23), 2516-2519(2015).

【22】X M Yin, Z Q Zhong and L J Zhao. Wide bandwidth chaotic signal generation in a monolithically integrated semiconductor laser via optical injection. Optics Communications. 355, 551-557(2015).

【23】W Q Zhu, Z M Wu and Z Q Zhong. Dynamics of a monolithically integrated semiconductor laser under optical injection. IEEE Photonics Technology Letters. 27(20), 2119-2122(2015).

【24】H F Qi, G C Chen and D Lu. A monolithically integrated laser-photodetector chip for on-chip photonic and microwave signal generation. Photonics. 6(102), (2019).

【25】T Harayama, S Sunada and K Yoshimura. Fast nondeterministic random-bit generation using on-chip chaos lasers. Physical Review A. 83(3), (2011).

【26】X Y Dou, H X Yin and C R Tang. Structure design and performance simulation on monolithic integrated chaotic-optical transmitter with photonic crystal waveguide in external cavity. Optik. 125(15), 3961-3965(2014).

【27】M J Zhang, Y H Xu and T Zhao. A hybrid integrated short-external-cavity chaotic semiconductor laser. IEEE Photonics Technology Letters. 29(21), 1911-1914(2017).

【28】M J Zhang, Y N Niu and T Zhao. Chaos generation by a hybrid integrated chaotic semiconductor laser. Chinese Physics B. 27(5), 126-134(2017).

【29】V Z Tronciu, C R Mirasso and P Colet. Chaos generation and synchronization using an integrated source with an air gap. IEEE Journal of Quantum Electronics. 46(12), 1840-1846(2010).

【30】V Z Tronciu, C R Mirasso and P Colet. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity. Journal of Physics B-Atomic Molecular and Optical Physics. 41(15), (2008).

【31】S Sunada, T Harayama and K Arai. Chaos laser chips with delayed optical feedback using a passive ring waveguide. Optics Express. 19(7), 5713-5724(2011).

【32】S Sunada, T Fukushima and S Shinohara. A compact chaotic laser device with a two-dimensional external cavity structure. Applied Physics Letters. 104(24), (2014).

【33】X W Ma, Y Z Huang and H Long. Experimental and theoretical analysis of dynamical regimes for optically injected microdisk lasers. Journal of Lightwave Technology. 34(22), 5263-5269(2016).

【34】Y X Wang, Z W Jia and Z S Gao. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback. Optics Express. 28(12), 18507-18515(2020).

【35】A A Tager and B B Elenkrig. Stability regimes and high-frequency modulation of laser diodes with short external cavity. IEEE Journal of Quantum Electronics. 29(12), 2886-2890(1993).

【36】A A Tager and K Petermann. High-frequency oscillations and self-mode locking in short external-cavity laser diodes. IEEE Journal of Quantum Electronics. 30(7), 1553-1561(1994).

【37】X X Guo, S Y Xiang and Y H Zhang. High speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation. IEEE Journal of Selected Topics in Quantum Electronics. 26(5), (2020).

【38】G Verschaffelt, M Khoder and G V D Sande. Random number generator based on an integrated laser with on-chip optical feedback. Chaos. 27(11), (2017).

【39】M P Vaughan, I Henning and M J Adams. Mutual optical injection in coupled DBR laser pairs. Optics Express. 17(3), 2033-2041(2009).

【40】B R Cemlyn, D Labukhin and I D Henning. Dynamic transitions in a photonic integrated circuit. IEEE Journal of Quantum Electronics. 48(2), 261-268(2012).

【41】D Liu, C Z Sun and B Xiong. Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation. Optics Express. 21(2), 2444-2451(2013).

【42】D Liu, C Z Sun and B Xiong. Locked and unlocked behavior of integrated mutually coupled lasers with ultra-short delay. IEEE International Semiconductor Laser Conference. 117-118(2014).

【43】D Liu, C Z Sun and B Xiong. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay. Optics Express. 22(5), 5614-5622(2014).

【44】S Ohara, Bosco A K Dal and K Ugajin. Dynamics-dependent synchronization in on-chip coupled semiconductor lasers. Physical Review E. 96(3), (2017).

【45】M M Chai, L J Qiao and M J Zhang. Simulation of monolithically integrated semiconductor laser subject to random feedback and mutual injection. IEEE Journal of Quantum Electronics. 56(5), 1-8(2020).

【46】L M Zhang, B W Pan and G C Chen. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser. Applied Optics. 56(4), 1253-1256(2017).

【47】M W Li, X C Zhang and J Z Zhang. Long-range and high-precision fault measurement based on integrated short-external-cavity chaotic semiconductor laser. IEEE Photonics Technology Letters. 31(16), 1389-1392(2019).

【48】A Argyris, S Deligiannidis and E Pikasis. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. Optics Express. 18(18), 18763-18768(2010).

【49】L M Zhang, B W Pan and G C Chen. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Scientific Reports. 7, (2017).

【50】R Takahashi, Y Akizawa and A Uchida. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation. Optics Express. 22(10), (2014).

【51】K Ugajin, Y Terashima and . Real-time fast physical random number generator with a photonic integrated circuit. Optics Express. 25(6), 6511-6523(2017).

【52】D Syvridis, A Argyris and A Bogris. Integrated devices for optical chaos generation and communication applications. IEEE Journal of Quantum Electronics. 45(11), 1421-1428(2009).

【53】A Argyris, E Grivas and M Hamacher. Chaos-on-a-chip secures data transmission in optical fiber links. Optics Express. 18(5), 5188-5189(2010).

【54】A Bogris, A Argyris and D Syvridis. Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits. IEEE Journal of Quantum Electronics. 46(10), 1421-1429(2010).

【55】S S Li and S C Chan. Chaotic Time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback. IEEE Journal of Selected Topics in Quantum Electronics. 21(6), (2015).

【56】J Z Zhang, C K Feng and M J Zhang. Suppression of time delay signature based on Brillouin backscattering of chaotic laser. IEEE Photonics Journal. 9(2), (2017).

【57】G R Gray, D Huang and G P Agrawal. Chaotic dynamics of semiconductor lasers with phase-conjugate feedback. Physical Review A. 49(3), 2096-2105(1994).

【58】J Sacher, W Els?sser and E O G?bel. Intermittence in the coherence collapse of a semiconductor laser with external feedback. Physical Review Letters. 63(20), 2224-2227(1989).

【59】D Y Tang, J Pujol and C O Weiss. Type-III intermittency of a laser. Physical Review A. 44(1), 35-38(1991).

【60】D Y Tang, M Y Li and C O Weiss. Laser dynamics of type-I intermittency. Physical Review A. 46(1), 676-678(1992).

【61】H P Wang, X Chen and L J Zhao. Experimental observation of intermittent chaos in a three-section monolithically integrated semiconductor laser. Progress in Electromagnetic Research Symposium. 4867-4870(2016).

【62】A K D Bosco, Y Akizawa and K Kanno. Photonic integrated circuits unveil crisis-induced intermittency. Optics Express. 24(19), 22198-22209(2016).

【63】K D B Andreas, N Sato and Y Terashima. Random number generation from intermittent optical chaos. IEEE Journal of Selected Topics in Quantum Electronics. 23(6), (2017).

引用该论文

Mengmeng Chai,Lijun Qiao,Mingjiang Zhang,Xiaojing Wei,Qiang Yang,Hongchun Xu. Progress in photonic integrated chaotic semiconductor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201066-20201066

柴萌萌,乔丽君,张明江,卫晓晶,杨强,徐红春. 光子集成混沌半导体激光器研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201066-20201066

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF