首页 > 论文 > 激光与光电子学进展 > 57卷 > 21期(pp:210003--1)

面向智能电力的无线光技术研究与进展

Research and Development of Wireless Optical Technology for Smart Power

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着各种新兴信息技术与电力电网的融合进一步走向深入,依托并服务于智能电力的多种无线光技术方案先后被提出,并形成了初步的规模。分别从电力线通信与可见光通信融合的信道特性及传输方案、混合射频电力可见光通信、电力无线光室内定位与中继、高压线路无线光监测等诸多方面阐述智能电力无线光技术的主要分类与前沿进展。结合多款原型实验,介绍了目前各类智能电力无线光技术方案在传输速率、覆盖范围、定位精度、能耗水平等方面所能达到的主要技术指标水平;最后给出智能电力无线光技术所面临的主要挑战与潜在的解决途径。

Abstract

With the further integration of various emerging information technologies and power grids, various wireless optical technology schemes relying on and serving smart power have been put forward and formed a preliminary scale. In this work, the main classification and frontier development of the smart power wireless optical technology are described from the aspects of the channel characteristics and transmission schemes of the fusion of power line communication and visible light communication, hybrid radio frequency power visible light communication, power wireless optical indoor positioning and relay, high voltage line wireless light monitoring, and so on. Then, combined with a number of prototype experiments, this paper introduces the levels of main technical indicators of various smart power wireless optical technologies in terms of the transmission rate, coverage, positioning accuracy, energy consumption, and so on. Finally, the major challenges and potential solutions of the smart power wireless optical technology are provided.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN929.12

DOI:10.3788/LOP57.210003

所属栏目:综述

基金项目:新疆维吾尔自治区自然科学基金面上项目;

收稿日期:2020-02-25

修改稿日期:2020-03-27

网络出版日期:2020-11-01

作者单位    点击查看

丁举鹏:新疆大学信息科学与工程学院信号检测与处理新疆维吾尔自治区重点实验室, 新疆 乌鲁木齐 830046
易芝玲:中国移动通信研究院, 北京 100053
王劲涛:清华大学电子工程系北京信息科学与技术国家研究中心, 北京100084
陈习锋:新疆大学信息科学与工程学院信号检测与处理新疆维吾尔自治区重点实验室, 新疆 乌鲁木齐 830046

联系人作者:丁举鹏(jupeng7778@163.com)

备注:新疆维吾尔自治区自然科学基金面上项目;

【1】Komine T, Nakagawa M. Integrated system of white LED visible-light communication and power-line communication [J]. IEEE Transactions on Consumer Electronics. 2003, 49(1): 71-79.

【2】Song X Q, Wang M Y, Xing S, et al. Progress of orthogonal frequency division multiplexing based on visible light communication [J]. Laser & Optoelectronics Progress. 2018, 55(12): 120008.
宋小庆, 王慕煜, 邢松, 等. 基于可见光通信的正交频分复用技术研究进展 [J]. 激光与光电子学进展. 2018, 55(12): 120008.

【3】Jia K J, Zhang S Q. Influence of multiuser interference on performances of direct-current-biased optical orthogonal frequency division multiplexing code division multiple access system for visible light communication [J]. Laser & Optoelectronics Progress. 2019, 56(11): 110604.
贾科军, 张守琴. 多用户干扰对可见光通信直流偏置光正交频分复用码分多址系统性能的影响 [J]. 激光与光电子学进展. 2019, 56(11): 110604.

【4】Yang Y F, Jiang M Z, Zhang Y, et al. Design of full duplex visible light communication system based on single light source [J]. Laser & Optoelectronics Progress. 2019, 56(1): 010603.
杨玉峰, 蒋明争, 张颖, 等. 基于单光源的全双工可见光通信系统设计 [J]. 激光与光电子学进展. 2019, 56(1): 010603.

【5】Ding J P. I C L, Zhang C, et al. Evaluation of outdoor visible light communications links using actual LED street luminaries [M]. Biometric Recognition, Cham: Springer. 2018, 572-579.

【6】Luo J H, Fan L Y, Li H S. Indoor positioning systems based on visible light communication: state of the art [J]. IEEE Communications Surveys & Tutorials. 2017, 19(4): 2871-2893.Luo J H, Fan L Y, Li H S. Indoor positioning systems based on visible light communication: state of the art [J]. IEEE Communications Surveys & Tutorials. 2017, 19(4): 2871-2893.

【7】Ndjiongue A R, Ferreira H C, Song J, et al. Hybrid PLC-VLC channel model and spectral estimation using a nonparametric approach [J]. Transactions on Emerging Telecommunications Technologies. 2017, 28(12): e3224.Ndjiongue A R, Ferreira H C, Song J, et al. Hybrid PLC-VLC channel model and spectral estimation using a nonparametric approach [J]. Transactions on Emerging Telecommunications Technologies. 2017, 28(12): e3224.

【8】Nlom S M, Ndjiongue A R, Ouahada K. Cascaded PLC-VLC channel: an indoor measurements campaign [J]. IEEE Access. 2018, 6: 25230-25239.Nlom S M, Ndjiongue A R, Ouahada K. Cascaded PLC-VLC channel: an indoor measurements campaign [J]. IEEE Access. 2018, 6: 25230-25239.

【9】Kashef M, Abdallah M, Al-Dhahir N. Transmit power optimization for a hybrid PLC/VLC/RF communication system [J]. IEEE Transactions on Green Communications and Networking. 2018, 2(1): 234-245.Kashef M, Abdallah M, Al-Dhahir N. Transmit power optimization for a hybrid PLC/VLC/RF communication system [J]. IEEE Transactions on Green Communications and Networking. 2018, 2(1): 234-245.

【10】Feng S M, Bai T, Hanzo L. Joint power allocation for the multi-user NOMA-downlink in a power-line-fed VLC network [J]. IEEE Transactions on Vehicular Technology. 2019, 68(5): 5185-5190.Feng S M, Bai T, Hanzo L. Joint power allocation for the multi-user NOMA-downlink in a power-line-fed VLC network [J]. IEEE Transactions on Vehicular Technology. 2019, 68(5): 5185-5190.

【11】Ma H, Lampe L, Hranilovic S. Hybrid visible light and power line communication for indoor multiuser downlink [J]. IEEE/OSA Journal of Optical Communications and Networking. 2017, 9(8): 635-647.Ma H, Lampe L, Hranilovic S. Hybrid visible light and power line communication for indoor multiuser downlink [J]. IEEE/OSA Journal of Optical Communications and Networking. 2017, 9(8): 635-647.

【12】Song J, Ding W B, Yang F, et al. An indoor broadband broadcasting system based on PLC and VLC [J]. IEEE Transactions on Broadcasting. 2015, 61(2): 299-308.Song J, Ding W B, Yang F, et al. An indoor broadband broadcasting system based on PLC and VLC [J]. IEEE Transactions on Broadcasting. 2015, 61(2): 299-308.

【13】Gao S L, Zhang J, Yang H. A reference channel model of indoor integrated power line communication and VLC systems [J]. Computer Engineering and Science. 2018, 40(6): 1062-1066.
高树立, 张剑, 阳辉. 室内电力线通信和可见光通信融合信道参考模型 [J]. 计算机工程与科学. 2018, 40(6): 1062-1066.
Gao S L, Zhang J, Yang H. A reference channel model of indoor integrated power line communication and VLC systems [J]. Computer Engineering and Science. 2018, 40(6): 1062-1066.
高树立, 张剑, 阳辉. 室内电力线通信和可见光通信融合信道参考模型 [J]. 计算机工程与科学. 2018, 40(6): 1062-1066.

【14】Song J, Liu S C, Zhou G X, et al. A cost-effective approach for ubiquitous broadband access based on hybrid PLC-VLC system[C]∥2016 IEEE International Symposium on Circuits and Systems (ISCAS), May 22-25, 2016, Montreal, QC, Canada. New York: , 2016, 2815-2818.

【15】Chen M C, Feng Y H, You S H, et al. Performance analysis of channel estimation for hybrid PLC & VLC system Study on Optical Communications[J]. 0, 2017(1): 3-6.
陈梦迟, 冯勇华, 游善红, 等. PLC与VLC融合通信系统中的信道估计技术分析 光通信研究[J]. 0, 2017(1): 3-6.

【16】Ding W B, Yang F, Yang H, et al. A hybrid power line and visible light communication system for indoor hospital applications [J]. Computers in Industry. 2015, 68: 170-178.

【17】Ma X, Gao J N, Yang F, et al. integrated power line and visible light communication system compatible with multi-service transmission [J]. Iet Communications. 2017, 11(1): 104-111.

【18】Gao J N, Yang F, Ding W B. Novel integrated power line and visible light communication system with bit division multiplexing[C]∥2015 International Wireless Communications and Mobile Computing Conference (IWCMC), August 24-28, 2015, Dubrovnik, Croatia. New York: , 2015, 680-684.

【19】Yang L W, Li J W, Zhang J N. Hybrid visible light communications (VLC) and PLC system[C]∥2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), July 31-August 4, 2017, Singapore, Singapore. New York: , 2017, 1-2.

【20】Ma H, Lampe L, Hranilovic S. Integration of indoor visible light and power line communication systems[C]∥2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, March 24-27, 2013, Johannesburg, South Africa. New York: , 2013, 291-296.

【21】Ma H, Lampe L, Hranilovic S. Subcarrier allocation in hybrid visible light and power line communication system[C]∥2016 IEEE International Symposium on Circuits and Systems (ISCAS), May 22-25, 2016, Montreal, QC, Canada. New York: , 2016, 2819-2822.

【22】Kubjana M D, Shongwe T, Ndjiongue A R. Hybrid PLC-VLC based on ACO-OFDM[C]∥2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), December 6-7, 2018, Plaine Magnien, Mauritius. New York: , 2018, 1-5.

【23】Chen M C, You S H, Wang Y, et al. Performance analysis of pilot-based OFDM channel estimation for hybrid PLC&VLC system[C]∥2016 15th International Conference on Optical Communications and Networks (ICOCN), September 24-27, 2016, Hangzhou, China. New York: , 2016, 1-3.

【24】Alavi S E, Rezaie H. Supa''''At A S M. Application of OFDM on integrated system of visible free space optic with PLC[C]∥2010 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), November 9-11, 2010, Port Dickson, Malaysia. New York: , 2010, 1-5.

【25】Ndjiongue A R, Shongwe T, Ferreira H C, et al. Cascaded PLC-VLC channel using OFDM and CSK techniques[C]∥2015 IEEE Global Communications Conference (GLOBECOM), December 6-10, 2015, San Diego, CA, USA. New York: , 2015, 1-6.

【26】Ndjiongue A R, Ferreira H C, Shongwe T. Inter-building PLC-VLC integration based on PSK and CSK techniques[C]∥2016 International Symposium on Power Line Communications and Its Applications (ISPLC), March 20-23, 2016, Bottrop, Germany. New York: , 2016, 31-36.

【27】Nlom S M, Ouahada K, Ndjiongue A R, et al. Evaluation of the SFSK-OOK integrated PLC-VLC system under the influence of sunlight[C]∥2017 International Symposium on Networks, Computers and Communications (ISNCC), May 16-18, 2017, Marrakech, Morocco. New York: , 2017, 1-5.

【28】Ndjiongue A R, Ferreira H C, Ouahada K, et al. Low-complexity SOCPBFSK-OOK interface between PLC and VLC channels for low data rate transmission applications[C]∥18th IEEE International Symposium on Power Line Communications and Its Applications, March 30-April 2, 2014, Glasgow, UK. New York: , 2014, 226-231.

【29】Amirshahi P, Kavehrad M. Broadband access over medium and low voltage power-lines and use of white light emitting diodes for indoor communications[C]∥CCNC 2006.2006 3rd IEEE Consumer Communications and Networking Conference, 2006, January 8-10, 2006, Las Vegas, NV, USA. New York: , 2006, 897-901.

【30】Zhang J K, Yang Y, Liu B, et al. Design of home network based on visible light communication and power line carrier communication [J]. Laser & Optoelectronics Progress. 2011, 48(10): 100604.
张建昆, 杨宇, 刘博, 等. 基于可见光和电力线载波的家庭网络设计 [J]. 激光与光电子学进展. 2011, 48(10): 100604.

【31】Liu Q Y, Sun D D, Zang Z B, et al. Design of visible light and power line communication protocol for electric power tunnel inspection Automation & Instrumentation[J]. 0, 2018(11): 133-137.
刘庆扬, 孙德栋, 臧志斌, 等. 面向电力隧道巡检的可见光和电力线混合通信协议设计 自动化与仪器仪表[J]. 0, 2018(11): 133-137.

【32】Xu Z. An autonomous intelligent UAV line inspection system with LIDAR navigation [J]. Zhejiang Electric Power. 2017, 36(6): 44-47.
徐展. 一种激光雷达导航的全自主智能无人机巡线系统 [J]. 浙江电力. 2017, 36(6): 44-47.
Xu Z. An autonomous intelligent UAV line inspection system with LIDAR navigation [J]. Zhejiang Electric Power. 2017, 36(6): 44-47.
徐展. 一种激光雷达导航的全自主智能无人机巡线系统 [J]. 浙江电力. 2017, 36(6): 44-47.

【33】Fan H, Li S H, Meng L, et al. Design and development of communication and positioning system of cable trench based on VLC+PLC [J]. Electric Power Information and Communication Technology. 2016, 14(6): 105-108.
范辉, 李帅华, 孟良, 等. 基于VLC+PLC的电缆隧道通信及定位系统设计与开发 [J]. 电力信息与通信技术. 2016, 14(6): 105-108.

【34】Jani M, Garg P, Gupta A. Performance analysis of a co-operative PLC/VLC system with multiple access points for indoor broadcasting [J]. AEU - International Journal of Electronics and Communications. 2019, 103: 64-73.

【35】Gheth W, Rabie K M, Adebisi B, et al. Performance analysis of integrated power-line/visible-light communication systems with AF relaying[C]∥2018 IEEE Global Communications Conference (GLOBECOM), December 9-13, 2018, Abu Dhabi, United Arab Emirates. New York: , 2018, 1-6.

【36】Jani M, Gargt P, Gupta A. Modeling and outage analysis of DF relay assisted mixed PLC-VLC system[C]∥2018 Twenty Fourth National Conference on Communications (NCC), February 25-28, 2018, Hyderabad, India. New York: , 2018, 1-5.

【37】Gheth W, Rabie K M, Adebisi B, et al. On the performance of DF-based power-line/visible-light communication systems[C]∥2018 International Conference on Signal Processing and Information Security (ICSPIS), November 7-8, 2018, DUBAI, United Arab Emirates. New York: , 2018, 1-4.

【38】Jani M, Garg P, Gupta A. Outage analysis of an asymmetric dual hop PLC-VLC system for indoor broadcasting[C]∥2019 National Conference on Communications (NCC), February 20-23, 2019, Bangalore, India. New York: , 2019, 1-6.

【39】Kashef M, Abdallah M, Al-Dhahir N, et al. On the impact of PLC backhauling in multi-user hybrid VLC/RF communication systems[C]∥2016 IEEE Global Communications Conference (GLOBECOM), December 4-8, 2016, Washington, DC, USA. New York: , 2016, 1-6.

【40】Kashef M, Torky A, Abdallah M, et al. On the achievable rate of a hybrid PLC/VLC/RF communication system[C]∥2015 IEEE Global Communications Conference (GLOBECOM), December 6-10, 2015, San Diego, CA, USA. New York: , 2015, 1-6.

【41】Rosolem J B, Penze R S, Floridia C, et al. FSO applied to optical fiber sensing: , 2017, 1-5.

【42】Rosolem J B, Bassan F R, Penze R S, et al. Optical sensing in high voltage transmission lines using power over fiber and free space optics [J]. Optical Fiber Technology. 2015, 26: 180-183.

【43】Floridia C, Rosolem J B, Leonardi A A, et al. Temperature sensing in high voltage transmission lines using fiber Bragg grating and free-space-optics [J]. Proceedings of SPIE. 2013, 8722: 87220N.

【44】Rende D, Nayagam A, Afkhamie K, et al. Noise correlation and its effect on capacity of inhome MIMO power line channels[C]∥2011 IEEE International Symposium on Power Line Communications and Its Applications, April 3-6, 2011, Udine, Italy. New York: , 2011, 60-65.

【45】Hashmat R, Pagani P, Zeddam A, et al. MIMO communications for inhome PLC networks: , 2010, 120-124.

【46】Schneider D, Schwager A, Speidel J, et al. Implementation and results of an MIMO PLC feasibility study[C]∥2011 IEEE International Symposium on Power Line Communications and Its Applications, April 3-6, 2011, Udine, Italy. New York: , 2011, 54-59.

【47】Cano C, Pittolo A, Malone D, et al. State of the art in power line communications: from the applications to the medium [J]. IEEE Journal on Selected Areas in Communications. 2016, 34(7): 1935-1952.Cano C, Pittolo A, Malone D, et al. State of the art in power line communications: from the applications to the medium [J]. IEEE Journal on Selected Areas in Communications. 2016, 34(7): 1935-1952.

【48】Laguna G, Barron R. Survey on indoor power line communication channel modeling[C]∥2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA''''08), September 30-October 3, 2008,. New York: , 2008, 163-168.

【49】Zimmermann M, Dostert K. Analysis and modeling of impulsive noise in broad-band powerline communications [J]. IEEE Transactions on Electromagnetic Compatibility. 2002, 44(1): 249-258.

【50】Ding J P. I C L, Chen X F, et al. Asymmetrical emission beams based visible light communication access points design[C]∥2019 28th Wireless and Optical Communications Conference (WOCC), May 9-10, 2019, Beijing, China. New York: , 2019, 1-5.

【51】Ding J P. I C L, Zhang H, et al. Cells planning of VLC networks using non-circular symmetric optical beam[C]∥ICC 2019 - 2019 IEEE International Conference on Communications (ICC), May 20-24, 2019, Shanghai, China. New York: , 2019, 1-6.

【52】Ding J P. I C L, Xu Z Y. Indoor optical wireless channel characteristics with distinct source radiation patterns [J]. IEEE Photonics Journal. 2016, 8(1): 1-15.

【53】You C X, Hu Q S, Li S D, et al. Light source distribution for visible light communication in coal mine working face based on position and power co-optimization [J]. Chinese Journal of Lasers. 2019, 46(4): 0406001.
游春霞, 胡青松, 李世党, 等. 基于位置和功率协同优化的煤矿工作面可见光通信光源分布 [J]. 中国激光. 2019, 46(4): 0406001.

【54】Chen Y, Shen Q X, Liu H L. Optimization algorithm of receiver optical power uniformity in indoor visible light communication [J]. Chinese Journal of Lasers. 2018, 45(5): 0506003.
陈勇, 沈奇翔, 刘焕淋. 室内可见光通信中接收光功率均匀性优化方法 [J]. 中国激光. 2018, 45(5): 0506003.

【55】Wang J A, Che Y, Lü C, et al. LED layout for indoor visible light communication based on energy optimization [J]. Acta Optica Sinica. 2017, 37(8): 0806003.
王加安, 车英, 吕超, 等. 基于能量最优的室内可见光通信LED布局 [J]. 光学学报. 2017, 37(8): 0806003.

【56】Kim S M, Baek M W, Nahm S H. Visible light communication using TDMA optical beamforming [J]. EURASIP Journal on Wireless Communications and Networking. 2017, 2017(1): 1-6.

【57】Mostafa A, Lampe L. Optimal and robust beamforming for secure transmission in MISO visible-light communication links [J]. IEEE Transactions on Signal Processing. 2016, 64(24): 6501-6516.

引用该论文

Ding Jupeng,I Chih-Lin,Wang Jintao,Chen Xifeng. Research and Development of Wireless Optical Technology for Smart Power[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210003

丁举鹏,易芝玲,王劲涛,陈习锋. 面向智能电力的无线光技术研究与进展[J]. 激光与光电子学进展, 2020, 57(21): 210003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF