首页 > 论文 > 中国激光 > 47卷 > 9期(pp:905003--1)

基于涡旋圆偏振光干涉的偏振快速旋转束匀滑方案 (封面文章)

Rapid Polarization Rotation Smoothing Scheme Based on Interference of Circularly Polarized Vortex Beamlets (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对高功率激光装置对靶面辐照均匀性和背向散射抑制的要求,提出了一个远场束匀滑方案,该方案利用涡旋圆偏振光的干涉,实现了焦斑均匀性和偏振特性的同步调控。其基本原理是通过对宽带种子光进行选频,使激光集束内的子束出现一定波长差,并采用共轭的螺旋相位板将子光束变换成拓扑荷数相反的拉盖尔-高斯光,进而利用偏振控制器件将其分别变为左旋圆偏振光和右旋圆偏振光,通过这两子束在焦面上的相干叠加即可实现焦斑局部光强和偏振的快速旋转。建立了基于涡旋圆偏振光干涉的偏振旋转物理模型,分析了焦斑的均匀性和偏振特性随子束波长组合、螺旋相位板拓扑荷数和入射激光束参数的变化规律。结果表明,通过合理选取子束波长组合,所提偏振旋转方案可实现局部光强和偏振的快速旋转,且结合传统的光谱色散匀滑方案后,可在改善靶面辐照均匀性的同时对背向散射进行有效抑制。

Abstract

Aiming at the requirement of illumination uniformity and backscattering suppression in laser-driven inertial confinement fusion (ICF) facilities, we propose a polarization rotation (PR) smoothing scheme based on the interference of circularly polarized vortex beamlets, which makes the simultaneous control of intensity and polarization of the focal spot. The basic mechanism is that a conjugate spiral phase plate is first used to transform the beamlets with certain wavelength difference into vortex beams with conjugate helical charges, and then the polarization control plate is used to change the polarization states of the beamlets into counter-rotating ones. Finally, the rapid rotation of both the local intensity and polarization of the focal spot can be realized by means of the interference of the circularly polarized vortex beamlets in the target plane. The physical model of the PR scheme based on the interference of circularly polarized vortex beamlets is established and the variations of illumination uniformity and polarization of the focal spot with the beamlet wavelength, the helical charge of the spiral phase plate, and the parameters of the incident beams are analyzed. The results indicate that the proposed PR scheme can be used to realize the intensity and polarization rotation at a specific rotation frequency by selecting the suitable wavelength combination. When this novel scheme is implemented together with the conventional spectral dispersion smoothing scheme, the smoothing performance can be further improved and the backscattering suppression can be effectively achieved.

广告组5 - 光束分析仪
补充资料

中图分类号:TN24

DOI:10.3788/CJL202047.0905003

所属栏目:光束传输与控制

基金项目:国家重大专项应用基础项目、科技部创新人才推进计划重点领域创新团队项目;

收稿日期:2020-03-12

修改稿日期:2020-04-26

网络出版日期:2020-09-01

作者单位    点击查看

黄媛:四川大学电子信息学院, 四川 成都 610065
张寅瑞:四川大学电子信息学院, 四川 成都 610065
钟哲强:四川大学电子信息学院, 四川 成都 610065
张彬:四川大学电子信息学院, 四川 成都 610065
孙年春:四川大学电子信息学院, 四川 成都 610065

联系人作者:张彬(zhangbinff@scu.edu.cn)

备注:国家重大专项应用基础项目、科技部创新人才推进计划重点领域创新团队项目;

【1】Spaeth M, Manes K R, Kalantar D H, et al. Description of the NIF laser [J]. Fusion Science and Technology. 2016, 69(1): 25-145.

【2】Zhang X M, Wei X F. Review of new generation of huge-scale high peak power laser facility in China [J]. Chinese Journal of Lasers. 2019, 46(1): 0100003.
张小民, 魏晓峰. 中国新一代巨型高峰值功率激光装置发展回顾 [J]. 中国激光. 2019, 46(1): 0100003.

【3】Haines B M, Vold E L, Molvig K, et al. The effects of plasma diffusion and viscosity on turbulent instability growth [J]. Physics of Plasmas. 2014, 21(9): 092306.

【4】Dixit S N, Thomas I M, Woods B W, et al. Random phase plates for beam smoothing on the Nova laser [J]. Applied Optics. 1993, 32(14): 2543-2554.

【5】Rothenberg J E. Comparison of beam-smoothing methods for direct-drive inertial confinement fusion [J]. Journal of the Optical Society of America B. 1997, 14(7): 1664-1671.

【6】Wang J, Zhong Z Q, Zhang B, et al. Beam smoothing scheme for multi-color laser quad based on a combination of hybrid gratings [J]. Acta Optica Sinica. 2018, 38(8): 0814001.
王健, 钟哲强, 张彬, 等. 基于复合型光栅组合的多色集束匀滑方案 [J]. 光学学报. 2018, 38(8): 0814001.

【7】Zhu Y C, Wu R, Zhang J Y, et al. Optimal design for continuous phase plate under segmental control across full-spectrum [J]. Acta Optica Sinica. 2018, 38(7): 0723001.
朱应成, 邬融, 张军勇, 等. 全频分段控制下连续相位板的优化设计 [J]. 光学学报. 2018, 38(7): 0723001.

【8】Tian Y T, Wu R, Sun M Y, et al. Influence of nonlinear modulation on the defocusing performance of beam smoothing phase plate [J]. Acta Optica Sinica. 2018, 38(10): 1014003.
田玉婷, 邬融, 孙明营, 等. 非线性调制影响束匀滑相位板离焦性能的研究 [J]. 光学学报. 2018, 38(10): 1014003.

【9】Jiang Y E, Li X C, Zhou S L, et al. Microwave resonant electro-optic bulk phase modulator for two-dimensional smoothing by spectral dispersion in SG-II [J]. Chinese Optics Letters. 2013, 11(5): 052301.

【10】Boehly T R, Smalyuk V A, Meyerhofer D D, et al. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser [J]. Journal of Applied Physics. 1999, 85(7): 3444-3447.

【11】Smalyuk V A, Boehly T R, Bradley D K, et al. Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets [J]. Physical Review Letters. 1998, 81(24): 5342-5345.

【12】Regan S P, Marozas J A, Kelly J H, et al. Experimental investigation of smoothing by spectral dispersion [J]. Journal of the Optical Society of America B. 2000, 17(9): 1483-1489.

【13】Glenzer S H, Suter L J, Turner R, et al. Energetics of inertial confinement fusion hohlraum plasmas [J]. Physical Review Letters. 1998, 80(13): 2845-2848.

【14】Gong T. Theoretical and experimental study on stimulated scattering in laser indirect-drive inertial confinement fusion [D]. Hefei: University of Science and Technology of China. 2015.
龚韬. 激光间接驱动惯性约束聚变中受激散射过程的理论和实验研究 [D]. 合肥: 中国科学技术大学. 2015.

【15】Hinkel D E, Callahan D A, Langdon A B, et al. Analyses of laser-plasma interactions in National Ignition Facility ignition targets [J]. Physics of Plasmas. 2008, 15(5): 056314.

【16】Lefebvre E, Berger R L, Langdon A B, et al. Reduction of laser self-focusing in plasma by polarization smoothing [J]. Physics of Plasmas. 1998, 5(7): 2701-2705.

【17】Barth I, Fisch N J. Reducing parametric backscattering by polarization rotation [J]. Physics of Plasmas. 2016, 23(10): 102106.

【18】Liu Z, Zheng C, Cao L H, et al. Decreasing Brillouin and Raman scattering by alternating-polarization light [J]. Physics of Plasmas. 2017, 24(3): 032701.

【19】Tian B Y, Zhong Z Q, Sui Z, et al. Ultrafast azimuthal beam smoothing scheme based on vortex beam [J]. Acta Physica Sinica. 2019, 68(2): 024207.
田博宇, 钟哲强, 隋展, 等. 基于涡旋光束的超快速角向集束匀滑方案 [J]. 物理学报. 2019, 68(2): 024207.

【20】Haynam C, Wegner P J, Auerbach J M, et al. National Ignition Facility laser performance status [J]. Applied Optics. 2007, 46(16): 3276-3303.

【21】Skupsky S, Short R W, Kessler T J, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light [J]. Journal of Applied Physics. 1989, 66(8): 3456-3462.

【22】Spaeth M L, Manes K R, Bowers M W, et al. National ignition facility laser system performance [J]. Fusion Science and Technology. 2016, 69(1): 366-394.

【23】Zheng W G, Wei X F, Zhu Q H, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility [J]. Matter and Radiation at Extremes. 2017, 2(5): 243-255.

【24】Gou D D, Yang S G, Yin F F, et al. Widely tunable mode-locked fiber laser operating in 1 μm wavelength range [J]. Acta Optica Sinica. 2013, 33(7): 0706013.
苟斗斗, 杨四刚, 尹飞飞, 等. 1 μm波段宽带可调谐锁模光纤激光器 [J]. 光学学报. 2013, 33(7): 0706013.

【25】Guo J Y, Xu R Q, Fan L Y, et al. Mechanism of broadband spectrum generation based on nonlinear ytterbium-doped fiber amplifier [J]. Chinese Journal of Lasers. 2019, 46(9): 0901009.
郭瑾颐, 徐润亲, 范路遥, 等. 非线性掺镱光纤放大器产生宽光谱机理 [J]. 中国激光. 2019, 46(9): 0901009.

【26】Shao J D, Dai Y P, Xu Q. Progress on optical components for ICF laser facility [J]. Optics and Precision Engineering. 2016, 24(12): 2889-2895.
邵建达, 戴亚平, 许乔. 惯性约束聚变激光驱动装置用光学元器件的研究进展 [J]. 光学精密工程. 2016, 24(12): 2889-2895.

【27】Guo Y B, Peng Y F, Wang Z Z, et al. Development and application of precision grinding/polishing and measurement equipment for large-size optical components Aeronautical Manufacturing Technology[J]. 0, 2018(6): 26-35.
郭隐彪, 彭云峰, 王振忠, 等. 大口径光学元件的精密磨抛与检测装备开发及应用 航空制造技术[J]. 0, 2018(6): 26-35.

【28】Fan C J, Xu J C, Ren Z J, et al. Performance of high-order spiral phase plate made by direct laser writing lithography [J]. High Power Laser and Particle Beams. 2011, 23(12): 3283-3286.
范长江, 徐建程, 任志君, 等. 激光直写制作高阶螺旋相位板及其性能 [J]. 强激光与粒子束. 2011, 23(12): 3283-3286.

【29】Shi L F, Zhang Z Y, Cao A, et al. One exposure processing to fabricate spiral phase plate with continuous surface [J]. Optics Express. 2015, 23(7): 8620-8629.

【30】Hou J, Wang H X, Chen X H, et al. Magnetorheological processing for large aperture plane optical elements [J]. Optics and Precision Engineering. 2016, 24(12): 3054-3060.
侯晶, 王洪祥, 陈贤华, 等. 大口径平面光学元件的磁流变加工 [J]. 光学精密工程. 2016, 24(12): 3054-3060.

【31】Zhou B. Ion beam modification of surface micro-area of fused silica optical components [D]. Chengdu: University of Electronic Science and Technology of China. 2017.
周波. 熔石英光学元件表面微区离子束修饰技术研究 [D]. 成都: 电子科技大学. 2017.

引用该论文

Huang Yuan,Zhang Yinrui,Zhong Zheqiang,Zhang Bin,Sun Nianchun. Rapid Polarization Rotation Smoothing Scheme Based on Interference of Circularly Polarized Vortex Beamlets[J]. Chinese Journal of Lasers, 2020, 47(9): 0905003

黄媛,张寅瑞,钟哲强,张彬,孙年春. 基于涡旋圆偏振光干涉的偏振快速旋转束匀滑方案[J]. 中国激光, 2020, 47(9): 0905003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF