首页 > 论文 > 光学学报 > 39卷 > 8期(pp:0826001--1)

Ince-Gaussian矢量光场的产生研究

Research on the Generation of Ince-Gaussian Vector Optical Field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

复杂空间结构矢量光场是当前光场调控领域的重要研究内容。作为一类基于椭圆坐标系的本征激光场,Ince-Gaussian(IG)光场比Laguerre-Gaussian和Hermite-Gaussian两类本征光场具有更丰富的空间自由度,是构建复杂空间结构矢量光场的基本光场之一。基于正交偏振IG偶模和奇模的空间叠加理论,通过空间光调制器分离调控偶模和奇模光场,系统地研究了不同阶数下正交偏振IG模式叠加生成的不同空间结构的IG矢量光场。对获取的矢量光场进行分析,并与理论模拟的结果进行对比,验证了并联分离调控产生IG矢量光场的可行性。

Abstract

The vector optical field with complex spatial structure plays an important role in the manipulation of the optical fields. As one of the eigen laser fields in the elliptic coordinate system, Ince-Gaussian (IG) field has richer spatial degrees of freedom than Laguerre-Gaussian beam and Hermite-Gaussian beam, and it is one of the fundamental fields to construct a complex vector optical field. This work is based on the theory of spatial superposition of the orthogonal polarized even and odd IG modes. IG vector optical fields with different orders and spatial structures are generated by a spatial light modulator which modulate the even and odd modes separately. Experimental results are studied and compared with the simulated results. The results demonstrate the feasibility of generating IG vector optical fields by dual modulation and parallel measurement.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/AOS201939.0826001

所属栏目:物理光学

基金项目:中央高校基本科研业务费专项资金(NS2016072);

收稿日期:2019-01-02

修改稿日期:2019-04-08

网络出版日期:2019-08-01

作者单位    点击查看

刘佳晴:南京航空航天大学理学院应用物理系, 江苏 南京 211106
王吉明:南京航空航天大学理学院应用物理系, 江苏 南京 211106
赫崇君:南京航空航天大学理学院应用物理系, 江苏 南京 211106
吴彤:南京航空航天大学理学院应用物理系, 江苏 南京 211106
路元刚:南京航空航天大学理学院应用物理系, 江苏 南京 211106
马海霞:南京航空航天大学理学院应用物理系, 江苏 南京 211106
刘友文:南京航空航天大学理学院应用物理系, 江苏 南京 211106

联系人作者:王吉明(jimingw@nuaa.edu.cn); 刘友文(jimingw@nuaa.edu.cn);

备注:中央高校基本科研业务费专项资金(NS2016072);

【1】Bandres M A. Gutiérrez-Vega J C. Ince-Gaussian beams. Optics Letters. 29(2), 144-146(2004).

【2】Schwarz U T and Bandres M A. Gutiérrez-Vega J C. Observation of Ince-Gaussian modes in stable resonators. Optics Letters. 29(16), 1870-1872(2004).

【3】Zhang M M, Bai S C and Dong J. Advances in Ince-Gaussian modes laser. Laser & Optoelectronics Progress. 53(2), (2016).
张明明, 白胜闯, 董俊. Ince-Gaussian模式激光的研究进展. 激光与光电子学进展. 53(2), (2016).

【4】Ohtomo T, Kamikariya K, Otsuka K et al. Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers. Optics Express. 15(17), 10705-10717(2007).

【5】Dong J and Ma J. RenY Y, et al. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd∶YAG microchip lasers. Laser Physics Letters. 10(8), (2013).

【6】Chu S C and Otsuka K. Numerical study for selective excitation of Ince-Gaussian modes in end-pumped solid-state lasers. Optics Express. 15(25), 16506-16519(2007).

【7】Han S, Liu Y Q, Zhang F et al. Direct generation of subnanosecond Ince-Gaussian modes in microchip laser. IEEE Photonics Journal. 7(1), (2015).

【8】Lei J, Hu A, Wang Y et al. A method for selective excitation of Ince-Gaussian modes in an end-pumped solid-state laser. Applied Physics B. 117(4), 1129-1134(2014).

【9】Bentley J B, Davis J A, Bandres M A et al. Generation of helical Ince-Gaussian beams with a liquid-crystal display. Optics Letters. 31(5), 649-651(2006).

【10】Woerdemann M, Alpmann C and Denz C. Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams. Applied Physics Letters. 98(11), (2011).

【11】Ngcobo S, Litvin I, Burger L et al. A digital laser for on-demand laser modes. Nature Communications. 4, (2013).

【12】Ren Y X, Fang Z X, Gong L et al. Dynamic generation of Ince-Gaussian modes with a digital micromirror device. Journal of Applied Physics. 117(13), (2015).

【13】Ma H X, Li X Z, Li H H et al. Spatial mode distributions of Ince-Gaussian beams modulated by phase difference factor. Acta Optica Sinica. 37(6), (2017).
马海祥, 李新忠, 李贺贺 等. 相位差因子调控的Ince-Gaussian光束空间模式分布. 光学学报. 37(6), (2017).

【14】Gather M C and Yun S H. Single-cell biological lasers. Nature Photonics. 5(7), 406-410(2011).

【15】Youngworth K S and Brown T G. Focusing of high numerical aperture cylindrical-vector beams. Optics Express. 7(2), 77-87(2000).

【16】Dorn R, Quabis S and Leuchs G. Sharper focus for a radially polarized light beam. Physical Review Letters. 91(23), (2003).

【17】Wang H F, Shi L P, Lukyanchuk B et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nature Photonics. 2(8), 501-505(2008).

【18】Davis J A, Cottrell D M, Campos J et al. Encoding amplitude information onto phase-only filters. Applied Optics. 38(23), 5004-5013(1999).

【19】Yoshiki K, Hashimoto M and Araki T. Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation. Japanese Journal of Applied Physics. 44(34), L1066-L1068(2005).

【20】Maurer C, Jesacher A, Fürhapter S et al. Tailoring of arbitrary optical vector beams. New Journal of Physics. 9(3), (2007).

【21】Han W, Yang Y F, Cheng W et al. Vectorial optical field generator for the creation of arbitrarily complex fields. Optics Express. 21(18), 20692-20706(2013).

【22】Naidoo D, Roux F S, Dudley A et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photonics. 10(5), 327-332(2016).

【23】Krenn M, Fickler R, Huber M et al. Entangled singularity patterns of photons in Ince-Gauss modes. Physical Review A. 87, (2013).

【24】Chen J, Wan C H, Kong L J et al. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum. Optics Express. 25(8), 8966-8974(2017).

引用该论文

Liu Jiaqing,Wang Jiming,He Chongjun,Wu Tong,Lu Yuangang,Ma Haixia,Liu Youwen. Research on the Generation of Ince-Gaussian Vector Optical Field[J]. Acta Optica Sinica, 2019, 39(8): 0826001

刘佳晴,王吉明,赫崇君,吴彤,路元刚,马海霞,刘友文. Ince-Gaussian矢量光场的产生研究[J]. 光学学报, 2019, 39(8): 0826001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF