首页 > 论文 > 激光与光电子学进展 > 56卷 > 13期(pp:131403--1)

50 GHz宽带混沌信号发生器

50 GHz Broadband Chaotic Signal Generator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于放大自发辐射(ASE)噪声扰动和半导体激光器互注入的方法,设计并研制了一款50 GHz宽带混沌信号发生器。该信号发生器主要包括两个分布式反馈半导体激光器(DFB-SL)和一个半导体光放大器(SOA),利用SOA产生的ASE噪声扰动SL产生混沌激光,基于SL互注入的拍频效应进一步实现频谱整形和带宽增强。在反馈强度为9.096%、频率失谐量为32.75 GHz、耦合强度为1.966的状态下,信号发生器可以产生频谱带宽超过50 GHz、平坦度为±2.5 dB、光谱线宽为0.56 nm的混沌激光。高带宽、高平坦度的宽带混沌信号发生器的研制,解决了混沌激光存在的频谱不平坦、带宽窄等问题,将进一步推动混沌激光的产业化应用。

Abstract

Herein, a broadband chaotic signal generator with a bandwidth of 50 GHz is designed and developed, based on the perturbation of amplified spontaneous emission (ASE) noise in conjunction with semiconductor laser mutual injection. The generator primarily contains two distributed-feedback semiconductor lasers (DFB-SL) and one semiconductor optical amplifier (SOA). Chaotic laser is obtained by perturbing the SL with ASE noise generated by the SOA. In addition, the beating effect caused by the SL mutual injection is exploited to achieve spectrum shaping and bandwidth enhancement. With a feedback strength of 9.096%, frequency detuning of 32.75 GHz, and coupling strength of 1.966, the chaotic laser with a bandwidth exceeding 50 GHz, flatness of ±2.5 dB, and linewidth of 0.56 nm is generated by the signal generator. This broadband chaotic signal generator, with large bandwidth and high flatness, solves the problems of uneven spectrum and narrow bandwidth of chaotic lasers, and further promotes the industrial application of chaotic laser.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.131403

所属栏目:激光器与激光光学

基金项目:国家自然科学基金、山西省高等学校中青年拔尖创新人才支持 计划、山西省“三晋学者”特聘教授支持计划、山西省回国留学科研人员资助;

收稿日期:2019-01-05

修改稿日期:2019-01-29

网络出版日期:2019-07-01

作者单位    点击查看

吕天爽:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
杨强:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
于小雨:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
乔丽君:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
张建忠:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
王涛:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
汪钦:武汉光迅科技股份有限公司, 湖北 武汉 430070
徐红春:武汉光迅科技股份有限公司, 湖北 武汉 430070
张明江:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024

联系人作者:张明江(zhangmingjiang@tyut.edu.cn)

备注:国家自然科学基金、山西省高等学校中青年拔尖创新人才支持 计划、山西省“三晋学者”特聘教授支持计划、山西省回国留学科研人员资助;

【1】Xie Z H, Xia L, Wang Y W et al. Fiber fault detection with high accuracy using chaotic signal from an SOA ring reflectometry. IEEE Photonics Technology Letters. 25(8), 709-712(2013).

【2】Ji Y N, Zhang M J, Wang Y C et al. Microwave-photonic sensor for remote water-level monitoring based on chaotic laser. International Journal of Bifurcation and Chaos. 24(3), (2014).

【3】Lin F Y and Liu J M. Chaotic lidar. IEEE Journal of Selected Topics in Quantum Electronics. 10(5), 991-997(2004).

【4】Li P and Wang Y C. Research progress in physical random number generator based on laser chaos for high-speed secure communication. Laser & Optoelectronics Progress. 51(6), (2014).
李璞, 王云才. 面向高速保密通信的激光混沌物理随机数发生器研究进展. 激光与光电子学进展. 51(6), (2014).

【5】Gupta M K, Tomar N K, Mishra V K et al. Observer design for semilinear descriptor systems with applications to chaos-based secure communication. International Journal of Applied and Computational Mathematics. 3(S1), 1313-1324(2017).

【6】Chatterjee M R, Mohamed A and Almehmadi F S. Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos. Applied Optics. 57(10), C1-C13(2018).

【7】Zhang L M, Pan B W, Chen G C et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Scientific Reports. 7, (2017).

【8】Hirano K, Yamazaki T, Morikatsu S et al. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Optics Express. 18(6), 5512-5524(2010).

【9】Uchida A, Amano K, Inoue M et al. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics. 2(12), 728-732(2008).

【10】Sakuraba R, Iwakawa K, Kanno K et al. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Optics Express. 23(2), 1470-1490(2015).

【11】Zhang J Z, Wang Y H, Zhang M J et al. Time-gated chaotic Brillouin optical correlation domain analysis. Optics Express. 26(13), 17597-17607(2018).

【12】Lang R and Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics. 16(3), 347-355(1980).

【13】Li Z, Feng Y L and Yao Z H. Autocorrelation and bandwidth research of chaotic laser from semiconductor lasers. Laser & Optoelectronics Progress. 55(2), (2018).
李增, 冯玉玲, 姚治海. 半导体激光器输出混沌光的自相关性及其带宽研究. 激光与光电子学进展. 55(2), (2018).

【14】Zhang X X, Wu T A, Chang K G et al. Time-delay characteristic and bandwidth analysis of chaotic output from single-ended feedback and mutually coupled vertical-cavity surface-emitting lasers. Chinese Journal of Lasers. 44(5), (2017).
张晓旭, 吴天安, 常凯歌 等. 单端反馈互耦合垂直腔面发射激光器混沌输出的时延特征和带宽分析. 中国激光. 44(5), (2017).

【15】Wang Y S, Zhao T, Wang A B et al. Design and dynamic characteristics of an external-cavity semiconductor laser generating wide bandwidth chaos. Laser & Optoelectronics Progress. 54(11), (2017).
王永胜, 赵彤, 王安帮 等. 一种可产生高带宽混沌的外腔半导体激光器的设计及其动态特性. 激光与光电子学进展. 54(11), (2017).

【16】Wang A B, Wang Y C and He H C. Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback. IEEE Photonics Technology Letters. 20(19), 1633-1635(2008).

【17】Wang A B, Wang Y C, Yang Y B et al. Generation of flat-spectrum wideband chaos by fiber ring resonator. Applied Physics Letters. 102(3), (2013).

【18】Zhang M J, Liu T G, Li P et al. Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback. IEEE Photonics Technology Letters. 23(24), 1872-1874(2011).

【19】Wang L Y, Zhong Z Q, Wu Z M et al. Bandwidth enhancement and time-delay signature suppression of chaotic signal from an optical feedback semiconductor laser by using cross phase modulation in a highly nonlinear fiber loop mirror. Proceedings of SPIE. 10017, (2016).

【20】Yang S J, Zhang J Z, Liu Y et al. Design of precise temperature control and driving circuit for chaotic laser. Journal of Shenzhen University (Science and Engineering). 35(5), 516-522(2018).
杨帅军, 张建忠, 刘毅 等. 面向混沌激光器的高精度温度与驱动电路设计. 深圳大学学报(理工版). 35(5), 516-522(2018).

【21】Takiguchi Y, Ohyagi K and Ohtsubo J. Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback. Optics Letters. 28(5), 319-321(2003).

引用该论文

Tianshuang Lü, Qiang Yang, Xiaoyu Yu, Lijun Qiao, Jianzhong Zhang, Tao Wang, Qin Wang, Hongchun Xu, Mingjiang Zhang. 50 GHz Broadband Chaotic Signal Generator[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131403

吕天爽, 杨强, 于小雨, 乔丽君, 张建忠, 王涛, 汪钦, 徐红春, 张明江. 50 GHz宽带混沌信号发生器[J]. 激光与光电子学进展, 2019, 56(13): 131403

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF