基于石英增强光声光谱的H2S痕量气体检测研究
Detection of Trace Sulfur Dioxide Gas Using Quartz-Enhanced Photoacoustic Spectroscopy
摘要
以输出波长为1578 nm的分布式反馈半导体激光器作为激发光源,结合波长调制及二次谐波技术对H2S痕量气体进行基于石英增强光声光谱技术(QEPAS)的检测研究。采用有限元分析法对QEPAS中常用的石英音叉进行仿真计算,得到石英音叉的前6阶模态振型与共振频率。实验中,添加了长为4 mm、内径为0.7 mm的声波微共振腔,优化了跨阻放大电路,在最优实验条件下对H2S气体进行检测,检测结果表明,QEPAS系统的二次谐波信号与H2S浓度具有良好的线性关系,获得的探测极限为19.3×10 -6。
Abstract
By combining the wavelength demodulation and second harmonics, the trace H2S gas is detected based on the quartz-enhanced photoacoustic spectroscopy (QEPAS). A distributed feedback semiconductor laser with an output wavelength of 1578 nm is used as the excitation source. Furthermore, a finite element analysis method is used in the simulation calculation for a quartz tuning fork, typically used in QEPAS systems, to obtain its first six modes and resonance frequencies. In an experiment, an acoustic micro-resonator with a length of 4 mm and an inner diameter of 0.7 mm is added, and a transimpedance amplifying circuit is optimized to detect the H2S gas under optimal experimental conditions. The results denote that the second harmonic signal of the QEPAS system exhibits a strongly linear relation with the H2S gas concentration, and a detection limit of 19.3×10 -6 is obtained.
中图分类号:O433.5
所属栏目:光谱学
收稿日期:2019-04-18
修改稿日期:2019-05-06
网络出版日期:2019-11-01
作者单位 点击查看
刘家祥:中国科学院安徽光学精密机械研究所, 安徽, 合肥 230031
朱之贞:中国科学院安徽光学精密机械研究所, 安徽, 合肥 230031
方勇华:中国科学技术大学环境科学与光电技术学院, 安徽, 合肥 230026中国科学院安徽光学精密机械研究所, 安徽, 合肥 230031
吴越:中国科学院安徽光学精密机械研究所, 安徽, 合肥 230031
杨文康:中国科学院安徽光学精密机械研究所, 安徽, 合肥 230031
陶孟琪:中国科学院安徽光学精密机械研究所, 安徽, 合肥 230031
宁志强:中国科学技术大学环境科学与光电技术学院, 安徽, 合肥 230026中国科学院安徽光学精密机械研究所, 安徽, 合肥 230031
联系人作者:方勇华(zlleva@foxmail.com)
【1】Wu H P. Research of new quartz-enhanced photoacoustic spectroscopy technique. Taiyuan: Shanxi University. 80-81(2017).
武红鹏. 新型石英增强光声光谱技术研究. 太原: 山西大学. 80-81(2017).
【2】Viciani S, de Cumis M S, Borri S et al. . A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 μm. Applied Physics B. 119(1), 21-27(2015).
【3】Tang M, Tu Z Q and Wu M C. Analysis of hydrogen sulfide in natural gas by lead acetate reaction rate method. Chemical Engineering of Oil and Gas. 30(1), 41-44(2001).
唐蒙, 涂振权, 吴敏初. 醋酸铅反应速率法检测天然气中的硫化氢. 石油与天然气化工. 30(1), 41-44(2001).
【4】Tang D L, Wang Y, Guo F et al. Optical H2S gas sensor based on spectrum-absorption. Chinese Journal of Sensors and Actuators. 23(4), 458-460(2010).
唐东林, 王莹, 郭峰 等. 光谱吸收硫化氢气体浓度传感器. 传感技术学报. 23(4), 458-460(2010).
【5】Huang Y H. Measurement of sulfureted hydrogen content in natural gas-main factor in iodimetry affecting analysis result. Natural Gas and Oil. 25(1), 23-25(2007).
黄韵弘. 天然气中硫化氢含量的测定--碘量法影响分析结果的主要因素. 天然气与石油. 25(1), 23-25(2007).
【6】Li S G, Wei Z J and Sun Z L. Static evaluation experiment and understanding of sulfur removal effect of drilling fluid desulfurizer. Natural Gas Industry. 32(8), 82-87(2012).
李树刚, 魏振吉, 孙中磊. 钻井液除硫剂除硫效果的静态评价实验及认识. 天然气工业. 32(8), 82-87(2012).
【7】Fei Y W, Li X Y, Yang H W et al. Gas chromatography-based comparative test on oil and gas evaporation loss online detection. Oil & Gas Storage and Transportation. 32(1), 59-62(2013).
费逸伟, 李晓越, 杨宏伟 等. 油气蒸发损耗气相色谱在线检测对比试验. 油气储运. 32(1), 59-62(2013).
【8】Yuan X, Hu C, Gu T et al. Application of hydrogen monitoring technology in sulfur gas transmission pipeline. Chemical Engineering of Oil and Gas. 44(1), 67-69(2015).
袁曦, 胡超, 谷坛 等. 氢监测技术在含硫输气管线上的应用. 石油与天然气化工. 44(1), 67-69(2015).
【10】Nikodem M. Chirped laser dispersion spectroscopy for laser-based hydrogen sulfide detection in open-path conditions. Optics Express. 24(10), A878-A884(2016).
【11】Hu X J, Mo X B, Qing S X et al. Online analysis of H2S in natural gas based on laser absorption spectroscopy technology. Natural Gas Industry. 35(6), 99-103(2015).
胡雪蛟, 莫小宝, 青绍学 等. 天然气中硫化氢的激光吸收光谱法在线分析. 天然气工业. 35(6), 99-103(2015).
【12】Zhao Y D. The research of novel resonant quartz-enhanced photoacoustic spectroscopy. Hefei: University of Science and Technology of China. 24-28(2017).
赵彦东. 新型共振石英增强光声光谱技术研究. 合肥: 中国科学技术大学. 24-28(2017).
【14】Chen S W, Sun T and Tang D L. Research on hydrogen sulfide sensor based on harmonic detection. Journal of Transduction Technology. 30(1), 31-34(2017).
陈书旺, 孙涛, 唐东林. 基于谐波检测的硫化氢气体传感器研究. 传感技术学报. 30(1), 31-34(2017).
【15】Usher M B. Landscape sensitivity: from theory to practice. Catena. 42(2/3/4), 375-383(2001).
【17】Kosterev A A, Tittel F K, Serebryakov D V et al. Applications of quartz tuning forks in spectroscopic gas sensing. Review of Scientific Instruments. 76(4), (2005).
引用该论文
Zhang Leilei,Liu Jiaxiang,Zhu Zhizhen,Fang Yonghua,Wu Yue,Yang Wenkang,Tao Mengqi,Ning Zhiqiang. Detection of Trace Sulfur Dioxide Gas Using Quartz-Enhanced Photoacoustic Spectroscopy[J]. Laser & Optoelectronics Progress, 2019, 56(21): 213001
张蕾蕾,刘家祥,朱之贞,方勇华,吴越,杨文康,陶孟琪,宁志强. 基于石英增强光声光谱的H2S痕量气体检测研究[J]. 激光与光电子学进展, 2019, 56(21): 213001