首页 > 论文 > 光学学报 > 39卷 > 9期(pp:0906006--1)

三种涡旋光光子晶体光纤的设计

Design of Three Vortex Photonic Crystal Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为进一步研究光子晶体光纤中涡旋光的传输特性,提出了3种不同结构的涡旋光光子晶体光纤,即三角晶格环形光子晶体光纤(TLPCF)、折射率倒转抛物线式光子晶体光纤(IPGIF)和六重准晶涡旋光光子晶体光纤(SPQCF)。利用矢量有限元分析方法,模拟计算了光纤中各个涡旋光模式的传输特性,研究结果表明:3种涡旋光光子晶体光纤中的模式有效折射率差均大于10 -4,支持不同数量的涡旋光传输。其中TLPCF的色散系数最小,SPQCF的色散系数最大,两者在宽波段(1400~1700 nm)内均保持了色散平坦趋势;3种光纤的限制性损耗均小于1×10 -7 dB·m -1,能够将光很好地局限在纤芯内部;3种光纤的非线性系数均保持在10 -3量级;涡旋光模式稳定传输的距离大于1 km。

Abstract

In order to study the transmission characteristics of vortex beams in a photonic crystal fiber (PCF), we propose three different vortex PCFs, i.e., triangular lattice ring photonic crystal fiber (TLPCF), inverse-parabolic graded-index profile photonic crystal fiber (IPGIF), and sixfold photonic quasi-crystal fiber (SPQCF). By using the vector finite element method, we analyze the transmission characteristics of vortex modes in three PCFs. The results indicate that the effective refractive index difference between adjacent vector modes is larger than 10 -4, which is conducive to the transmission of vortex beams. The dispersion coefficient of TLPCF is the smallest, and that of SPQCF is the largest. Both of TLPCF and SPQCF can maintain the flat dispersion over a wide wavelength range (1400-1700 nm). The confinement losses of these three fibers are below 1×10 -7 dB·m -1, so that light can be confined in fiber core well. The nonlinear coefficients of the three different PCFs are in the order of 10 -3, and the stable transmission distances of the three different PCFs are longer than 1 km.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.11

DOI:10.3788/AOS201939.0906006

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、天津市自然科学基金;

收稿日期:2019-03-15

修改稿日期:2019-05-21

网络出版日期:2019-09-01

作者单位    点击查看

魏薇:南开大学物理科学学院, 天津 300071
张羚翔:南开大学物理科学学院, 天津 300071
张志明:南开大学物理科学学院, 天津 300071
唐莉勤:南开大学物理科学学院, 天津 300071
丁镭:南开大学物理科学学院, 天津 300071
李乙钢:南开大学物理科学学院, 天津 300071

联系人作者:李乙钢(liyigang@nankai.edu.cn)

备注:国家自然科学基金、天津市自然科学基金;

【1】Baranova N. Zel''''Dovich B Y, Mamaev A, et al. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment). JETP Letters. 33(4), 195-199(1981).

【2】Swartzlander G A. Jr, Law C T. Optical vortex solitons observed in Kerr nonlinear media. Physical Review Letters. 69(17), 2503-2506(1992).

【3】Beijersbergen M W. Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications. 112(5/6), 321-327(1994).

【4】Mirhosseini M. Maga a-Loaiza O S, Chen C C, et al. Rapid generation of light beams carrying orbital angular momentum. Optics Express. 21(25), 30196-30203(2013).

【5】Yu N, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 334(6054), 333-337(2011).

【6】Marrucci L, Karimi E, Slussarenko S et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics. 13(6), (2011).

【7】Bozinovic N, Golowich S, Kristensen P et al. Control of orbital angular momentum of light with optical fibers. Optics Letters. 37(13), 2451-2453(2012).

【8】Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics. 7(1), 66-106(2015).

【9】Bozinovic N, Yue Y, Ren Y et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 340(6140), 1545-1548(2013).

【10】Brunet C, Vaity P, Messaddeq Y et al. Design, fabrication and validation of an OAM fiber supporting 36 states. Optics Express. 22(21), 26117-26127(2014).

【11】Li S H and Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing. IEEE Photonics Journal. 5(5), (2013).

【12】Xia C, Bai N, Ozdur I et al. Supermodes for optical transmission. Optics Express. 19(17), 16653-16664(2011).

【13】Li S H and Wang J. Supermode fiber for orbital angular momentum (OAM) transmission. Optics Express. 23(14), 18736-18745(2015).

【14】Ung B, Vaity P, Wang L et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Optics Express. 22(15), 18044-18055(2014).

【15】Zhang Z S, Gan J L, Heng X B et al. Optical fiber design with orbital angular momentum light purity higher than 99.9%. Optics Express. 23(23), 29331-29341(2015).

【16】Zhao C Y, Gan X T, Li P et al. Design of multicore photonic crystal fibers to generate cylindrical vector beams. Journal of Lightwave Technology. 34(4), 1206-1211(2016).

【17】Yue Y, Zhang L, Yan Y et al. Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber. Optics Letters. 37(11), 1889-1891(2012).

【18】Knight J C. Photonic crystal fibres. Nature. 424(6950), 847-851(2003).

【19】Russell P. Photonic crystal fibers. Science. 299(5605), 358-362(2003).

【20】Li H, Zhang H, Zhang X G et al. Design tool for circular photonic crystal fibers supporting orbital angular momentum modes. Applied Optics. 57(10), 2474-2481(2018).

【21】Zhang H, Zhang X G, Li H et al. A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission. Optics Communications. 397, 59-66(2017).

【22】Ramachandran S and Kristensen P. Optical vortices in fiber. Nanophotonics. 2(5/6), 455-474(2013).

【23】Zhang L X, Wei W, Zhang Z M et al. Propagation properties of vortex beams in a ring photonic crystal fiber. Acta Physica Sinica. 66(1), (2017).
张羚翔, 魏薇, 张志明 等. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报. 66(1), (2017).

【24】Liao K, Liao J F, Xie Y M et al. A defect photonic crystal fiber with high birefringence and negative dispersion. Laser & Optoelectronics Progress. 55(7), (2018).
廖昆, 廖健飞, 谢应茂 等. 一种高双折射负色散的缺陷型光子晶体光纤. 激光与光电子学进展. 55(7), (2018).

【25】Yue Y, Yan Y, Ahmed N et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber. IEEE Photonics Journal. 4(2), 535-543(2012).

引用该论文

Wei Wei,Zhang Lingxiang,Zhang Zhiming,Tang Liqin,Ding Lei,Li Yigang. Design of Three Vortex Photonic Crystal Fibers[J]. Acta Optica Sinica, 2019, 39(9): 0906006

魏薇,张羚翔,张志明,唐莉勤,丁镭,李乙钢. 三种涡旋光光子晶体光纤的设计[J]. 光学学报, 2019, 39(9): 0906006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF