Photonics Research, 2019, 7 (9): 09001075, Published Online: Aug. 26, 2019   

Switchable slow light rainbow trapping and releasing in strongly coupling topological photonic systems Download: 622次

Author Affiliations
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
Abstract
We design and present a switchable slow light rainbow trapping (SLRT) state in a strongly coupling topological photonic system made from a magneto-optical photonic crystal waveguide channel. The waveguide channel supports slow light states with extremely small group velocity (vg=2.1×10 6c), low group-velocity dispersion, and a broadband operation bandwidth (3.60–4.48 GHz, near 22% of bandwidth). These slow light states originate from the strong coupling between two counter propagating topological photonic states. Under a gradient magnetic field, different frequency components of a wave packet are separated and stored at different positions for a long temporal duration with high spatial precision (without crosstalk and overlap between the electric fields of different frequencies) to form SLRT. Besides, these SLRT states can be easily switched among the forbidden state, trapped state, and releasing state by tuning the external magnetic field. The results suggest that the topological photonic state can offer a precise route of spatial-temporal-spectral control upon a light signal and find applications for optical buffers, broadband slow light systems, optical filters, wavelength-division multiplexing, and other optical communication devices.

Jianfeng Chen, Wenyao Liang, Zhi-Yuan Li. Switchable slow light rainbow trapping and releasing in strongly coupling topological photonic systems[J]. Photonics Research, 2019, 7(9): 09001075.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!