首页 > 论文 > 光学学报 > 39卷 > 7期(pp:722001--1)

紫外光固化有机-无机纳米复合材料成型衍射光学元件制造技术

Manufacturing Technology of Diffractive Optical Elements Formed by Ultraviolet-Cured Organic-Inorganic Nanocomposites

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对衍射光学元件制造中材料选择的局限以及遮挡效应,采用了紫外光固化有机-无机纳米复合材料快速成型技术制造衍射光学元件,获得高折射率、高色散的衍射光学元件。通过有机-无机纳米复合材料制备实验获得了一种适合制造衍射光学元件的复合材料配方,配方各成分包括质量分数为57.97%的2官脂肪族聚氨酯丙烯酸酯(2PUA)、质量分数为38.64%的季戊四醇三丙烯酸酯(PETA)、质量分数为1.45%的光引发剂184(Irgacure 184)、质量分数为1.93%的分散剂163(disperbyk 163)和质量分数可控的纳米粒子ITO。使用该方法制备了紫外光固化衍射光学元件,并使用台阶仪测量得到衍射光学元件模芯表面的平均微结构高度为13.26 μm,光固化衍射光学元件表面的平均微结构高度为12.58 μm,使用光固化衍射光学元件与模芯微结构的相对误差为5.141%。紫外光固化有机-无机纳米复合材料的衍射光学元件制造技术突破了材料选择局限,减小了遮挡误差,对宽波段的折衍射混合光学系统的快速成型具有重要意义。

Abstract

By considering the limitations of material selection and shielding effect associated with the manufacturing of diffractive optical elements, this study introduces the fabrication of diffractive optical elements based on the rapid prototyping technology of the ultraviolet (UV)-cured organic-inorganic nanocomposites. Thus, we can obtain diffractive optical elements exhibiting a high refractive index and a high dispersion. Further, a composite formulation suitable for manufacturing diffractive optical elements is obtained based on an experiment on the organic-inorganic nanocomposite preparation. The formulation contains aliphatic polyurethane acrylate (2PUA) with mass fraction of 57.97%, pentaerythritol triacrylate (PETA) with mass fraction of 38.64%, photoinitiator 184 (Irgacure 184) with mass fraction of 1.45%, dispersant 163 (Disperbyk 163) with mass fraction of 1.93%, and ITO nanoparticles with controllable mass fraction. Diffractive optical elements are fabricated using this method. The average microstructural height of the mold-core surface of the diffractive optical elements measured using the step instrument is 13.26 μm. Subsequently, we fabricate the UV-cured diffractive optical elements. Further, the average surface microstructural height of the diffraction optical elements using UV-cured organic-inorganic nanocomposites is 12.58 μm. The relative error between the diffraction optical elements and the mold-core microstructures fabricated by the UV-cured organic-inorganic nanocomposites is 5.141%. The manufacturing technology of diffractive optical elements for the UV-cured organic-inorganic nanocomposites overcomes the limitation of material selection and reduces the occlusion error, making it considerably significant for the rapid prototyping of the refractive-diffractive hybrid optical systems in a wide band.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.0722001

所属栏目:光学设计与制造

基金项目:国家自然科学基金;

收稿日期:2018-12-21

修改稿日期:2019-03-21

网络出版日期:2019-07-01

作者单位    点击查看

王伦:长春理工大学光电工程学院, 吉林 长春 130022
薛常喜:长春理工大学光电工程学院, 吉林 长春 130022
兰喜瑞:长春理工大学光电工程学院, 吉林 长春 130022
李闯:长春理工大学光电工程学院, 吉林 长春 130022
吴百融:长春理工大学光电工程学院, 吉林 长春 130022
贾孟:长春理工大学光电工程学院, 吉林 长春 130022
王蕾:长春理工大学光电工程学院, 吉林 长春 130022

联系人作者:薛常喜(xcx272479@sina.com)

备注:国家自然科学基金;

【1】Li F, Cheng J G, Wang M Y et al. An amplitude and phase hybrid modulation Fresnel diffractive optical element. Optics Communications. 413, 44-47(2018).

【2】Gao L, To S, Yang H F et al. Effect of assembling errors on the diffraction efficiency for multilayer diffractive optical elements. Applied Optics. 53(31), 7341-7347(2014).

【3】Herrera-Fernandez J M and Sanchez-Brea L M. Double diffractive optical element system for near-field shaping. Applied Optics. 50(23), 4587-4593(2011).

【4】Fujikawa K, Hirakawa G, Shiono T et al. Optical properties of a Si binary optic microlens for infrared ray. [C]∥Proceedings IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems, January 26-30, 1997, Nagoya, Japan. New York: IEEE. 360-365(1997).

【5】Beretta S, Cairoli M M and Viardi M. Optimum design of phase gratings for diffractive optical elements obtained by thin-film deposition. Proceedings of SPIE. 1544, 2-9(1991).

【6】Xue C X, Cui Q F, Yang L L et al. Design and analysis of multi-layer diffractive optical elements with Cauchy dispersion formula. Acta Optica Sinica. 31(6), (2011).
薛常喜, 崔庆丰, 杨亮亮 等. 基于柯西色散公式的多层衍射光学元件的设计和分析. 光学学报. 31(6), (2011).

【7】Ma Z B, Kang F Z and Wang H. Effect of fabrication errors of double-layer BOE on diffractive efficiency. Infrared and Laser Engineering. 45(9), (2016).
马泽斌, 康福增, 王昊. 双层BOE加工误差对衍射效率的影响分析. 红外与激光工程. 45(9), (2016).

【8】Yoo S, Song H Y, Lee J et al. Cost-effective large-scale fabrication of diffractive optical elements by using conventional semiconducting processes. Applied Optics. 51(33), 8052-8056(2012).

【9】Xue C X and To S. Analysis of materials selected for multilayer diffractive optical elements. Optik. 125(13), 3245-3248(2014).

【10】Liu X, Zhang M, Pang H et al. Fabrication of large-angle diffractive optical element based on nanoimprint lithography. Acta Photonica Sinica. 45(6), (2016).
刘鑫, 张满, 庞辉 等. 基于纳米压印的大角度衍射光学元件批量化制备方法. 光子学报. 45(6), (2016).

【11】Liu Y F, Lü C L, Li M J et al. High refractive index organic-inorganic hybrid coatings with TiO2 nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 328(1/2/3), 67-72(2008).

【12】Mataki H, Yamaki S and Fukui T. Nanostructured organic/inorganic composites as transparent materials for optical components. Japanese Journal of Applied Physics. 43(8B), 5819-5823(2004).

【13】Yang L L, Cui Q F, Liu T et al. Effects of manufacturing errors on diffraction efficiency for multilayer diffractive optical elements. Applied Optics. 50(32), 6128-6133(2011).

【14】Iwasa H. -08-12[2018-12-01]. https:∥patents.google.com/patent/US8804245B2/en. (2014).

【15】production method therefor: US9557454[P]. -01-31[2018-12-02]. https:∥patents.google.com/patent/US20130301132. (2017).

引用该论文

Lun Wang, Changxi Xue, Xirui Lan, Chuang Li, Bairong Wu, Meng Jia, Lei Wang. Manufacturing Technology of Diffractive Optical Elements Formed by Ultraviolet-Cured Organic-Inorganic Nanocomposites[J]. Acta Optica Sinica, 2019, 39(7): 0722001

王伦, 薛常喜, 兰喜瑞, 李闯, 吴百融, 贾孟, 王蕾. 紫外光固化有机-无机纳米复合材料成型衍射光学元件制造技术[J]. 光学学报, 2019, 39(7): 0722001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF