首页 > 论文 > 光学学报 > 39卷 > 9期(pp:0911001--1)

针对广域像移变化的数字时间延迟积分方法

Digital Time Delay and Integration Method for Wide-Range Image Motion Variation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为解决现有电子式像移补偿在扫描方向上补偿范围有限的问题,提出一种适用于沿扫描方向广域像移大小变化的数字时间延迟积分(TDI)方法。首先基于像移计算结果判断像移大小是否在电子行频可补偿的范围内,当在不可补偿范围时,基于利用图像插值和配准像素对位累加来调整像移失配量的思想,构建任意像移大小的数字TDI算法模型,并对所提算法进行实验验证。实验结果表明:当96级积分的总像移量远小于像元尺寸时,所提算法与逐行累加的传统TDI方法成像结果相当;当96级积分的总像移量大于像元尺寸时,总像移量超出电子式像移可补偿范围,传统TDI方法扫描图像发生严重混叠,成像质量急剧下降,而所提算法获取图像的像移传递函数和互相关性测度均提高0.11,可有效保持成像质量。

Abstract

The compensable range of the existing electronic image motion compensation method is limited in scanning direction. To solve this problem, a digital time delay and integration (TDI) method suitable for wide-range image motion variation in scanning direction is proposed. First, based on the image motion calculation results, whether the image motion is within the range of electron frequency compensability is judged. Then, the image motion mismatch in scanning direction will be adjusted by image interpolation and matched pixel accumulation when it is not within the compensable range. A digital TDI algorithm model suitable for arbitrary image motion is constructed. Finally, the proposed algorithm is verified by experiments. The experimental results show that when the total image motion of 96-stage integration is much smaller than one pixel size, the image quality of the proposed algorithm is similar to that of the traditional TDI method, but when the total image motion of 96-stage integration is larger than one pixel size, which exceeds the compensable range of the electronic method, the image quality of the proposed algorithm is much better than that of the traditional TDI method. The traditional TDI method causes serious aliasing and the image quality drops sharply; however, the proposed algorithm can maintain the image quality effectively. Both the image motion transfer function and the similarity correlation measure can be improved by 0.11 using the proposed algorithm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP722.4

DOI:10.3788/AOS201939.0911001

所属栏目:成像系统

基金项目:国家自然科学基金、吉林省优秀青年人才基金、吉林省重点科技研发计划;

收稿日期:2019-04-11

修改稿日期:2019-05-13

网络出版日期:2019-09-01

作者单位    点击查看

陶淑苹:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
张续严:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
冯钦评:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
宋明珠:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
吴勇:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033

联系人作者:陶淑苹(taoshuping-163@163.com)

备注:国家自然科学基金、吉林省优秀青年人才基金、吉林省重点科技研发计划;

【1】Yu H, Qian X Y, Guo M H et al. An antivibration time-delay integration CMOS image sensor with online deblurring algorithm. IEEE Transactions on Circuits and Systems for Video Technology. 26(8), 1544-1554(2016).

【2】Wang J Q, Yu P, Yan C X et al. Space optical remote sensor image motion velocity vector computational modeling, error budget and synthesis. Chinese Optics Letters. 3(7), 414-417(2005).

【3】Wang J Q, Yu P, Yan C X et al. Space optical remote sensor image motion velocity vector computational modeling. Acta Optica Sinica. 24(12), 1585-1589(2004).
王家骐, 于平, 颜昌翔 等. 航天光学遥感器像移速度矢计算数学模型. 光学学报. 24(12), 1585-1589(2004).

【4】Jiao B L and Yan X H. Image-motion analysis and image restoration based on TDI_CCD imaging. Journal of Astronautics. 29(2), 675-678(2008).
焦斌亮, 闫旭辉. 基于TDI_CCD成像像移分析及图像复原. 宇航学报. 29(2), 675-678(2008).

【5】Li W X. Research on method of image motion compensation of space high resolution cameras’ collecting scene agilely. Beijing: Graduate University of the Chinese Academy of Sciences. 6-8(2012).
李伟雄. 高分辨率空间相机敏捷成像的像移补偿方法研究. 北京: 中国科学院研究生院. 6-8(2012).

【6】Wang D J, Kuang H P, Cai X C et al. Digital implementation of forward motion compensation in TDI-CCD panoramic aerial camera. Optics and Precision Engineering. 16(12), 2465-2472(2008).
王德江, 匡海鹏, 蔡希昌 等. TDI-CCD全景航空相机前向像移补偿的数字实现方法. 光学精密工程. 16(12), 2465-2472(2008).

【7】He X J. In-orbit autonomous imaging technology of space TDI CCD camera. Beijing: Graduate University of the Chinese Academy of Science. 6-10(2011).
贺小军. 空间TDI CCD相机在轨智能成像处理技术研究. 北京: 中国科学院研究生院. 6-10(2011).

【8】He X J, Jin G, Yang X B et al. Imaging model and image recovering algorithms of spaceborne camera in the end of orbit life. Acta Geodaetica Et Cartographica Sinica. 39(6), 579-584(2010).
贺小军, 金光, 杨秀彬 等. 星载相机轨道末期成像模型及图像复原算法. 测绘学报. 39(6), 579-584(2010).

【9】Ye P Z. Optical remote sensing motion degration simulation and image restoration technology. Hangzhou: Zhejiang University. 63-71(2017).
叶鹏钊. 光学遥感运动退化成像仿真与图像复原技术. 杭州: 浙江大学. 63-71(2017).

【10】Tao S P, Jin G, Qu H S et al. Design and analysis of CMOS camera based on time delay and integration in digital domain to realize spatial high-resolution imaging. Acta Optica Sinica. 32(4), (2012).
陶淑苹, 金光, 曲宏松 等. 实现空间高分辨成像的数字域时间延迟积分CMOS相机设计及分析. 光学学报. 32(4), (2012).

【11】Tao S P, Jin G, Qu H S et al. Design of CMOS imaging system based on rolling TDI in digital domain. Infrared and Laser Engineering. 41(9), 2380-2385(2012).
陶淑苹, 金光, 曲宏松 等. 采用卷帘数字域TDI技术的CMOS成像系统设计. 红外与激光工程. 41(9), 2380-2385(2012).

【12】Tao S P and Jin G. Influence analysis on the rolling shutter for time delay and integration in digital domain. Acta Optica Sinica. 35(3), (2015).
陶淑苹, 金光. 卷帘快门对数字域TDI成像的影响分析. 光学学报. 35(3), (2015).

【13】Lepage G, Bogaerts J and Meynants G. Time-delay-integration architectures in CMOS image sensors. IEEE Transactions on Electron Devices. 56(11), 2524-2533(2009).

【14】Xu J T, Shi X L, Nie K M et al. A global shutter high speed TDI CMOS image sensor with pipelined charge transfer pixel. IEEE Sensors Journal. 18(7), 2729-2736(2018).

【15】Nie K M, Yao S Y, Xu J T et al. A 128-stage analog accumulator for CMOS TDI image sensor. IEEE Transactions on Circuits and Systems I: Regular Papers. 61(7), 1952-1961(2014).

【16】Nie K M, Xu J T and Gao Z Y. A 128-stage CMOS TDI image sensor with on-chip digital accumulator. IEEE Sensors Journal. 16(5), 1319-1324(2016).

引用该论文

Tao Shuping,Zhang Xuyan,Feng Qinping,Song Mingzhu,Wu Yong. Digital Time Delay and Integration Method for Wide-Range Image Motion Variation[J]. Acta Optica Sinica, 2019, 39(9): 0911001

陶淑苹,张续严,冯钦评,宋明珠,吴勇. 针对广域像移变化的数字时间延迟积分方法[J]. 光学学报, 2019, 39(9): 0911001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF