首页 > 论文 > 激光与光电子学进展 > 56卷 > 13期(pp:132501--1)

周期性银纳米颗粒阵列的光学特性

Optical Properties of Periodic Silver Nanoparticle Arrays

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用剪裁的纳米球掩模沉积技术制备了周期性的银纳米颗粒与银纳米孔阵,并探讨了相关纳米结构的光学特性。先在玻璃基片上制备六角密排的聚苯乙烯纳米球作为掩模,然后利用电子束蒸镀银金属,在超声中去掉掩模,最终可以获得周期性的银纳米三角颗粒。若在蒸镀银金属前先对聚苯乙烯纳米球进行氧等离子体刻蚀,可以获得周期性的银纳米孔阵。测量上述银纳米颗粒与银纳米孔阵中纳米银的透射谱,对其表面等离子体共振特性进行了分析。同时,利用三维时域有限差分方法对相关纳米结构的光吸收特性进行了数值模拟,理论模拟与实验结果基本相符。

Abstract

Periodic silver nanoparticles and nanohole arrays were prepared through tailored nanosphere lithography, and the optical properties of the fabricated nanostructures were investigated. First, a hexagonal close-packed monolayer comprising polystyrene (PS) nanospheres was made on a glass substrates as a mask. Then, the silver film was deposited in the voids between the nanospheres using an electron beam evaporator. After deposition, the PS nanospheres were removed, affording an array of silver nanoparticles. If the PS nanospheres were tailored through reactive-ion etching prior to the silver deposition step, the nanoparticles merged with the adjacent particles and produced periodic silver nanohole arrays. A series of nanostructures were prepared, and their surface plasmon resonance characteristics were analyzed by measuring the transmission spectra. The optical properties of the related nanostructures were numerically simulated using the finite difference time domain, the results of which were consistent with those of the experiments.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.132501

所属栏目:光电子学

基金项目:国家自然科学基金、广州市科技计划项目、广州市高校创新创业教育项目、广东技术师范学院自然科学基金;

收稿日期:2019-01-02

修改稿日期:2019-01-29

网络出版日期:2019-07-01

作者单位    点击查看

万巍:广东技术师范大学光电工程学院, 广东 广州 510665
陈湛旭:广东技术师范大学光电工程学院, 广东 广州 510665
陈泳竹:广东技术师范大学光电工程学院, 广东 广州 510665
陈耿炎:广东技术师范大学光电工程学院, 广东 广州 510665
林家勇:广东技术师范大学光电工程学院, 广东 广州 510665

联系人作者:陈湛旭(gsczx@gpnu.edu.cn)

备注:国家自然科学基金、广州市科技计划项目、广州市高校创新创业教育项目、广东技术师范学院自然科学基金;

【1】Barnes W L, Dereux A and Ebbesen T W. Surface plasmon subwavelength optics. Nature. 424(6950), 824-830(2003).

【2】Wang K, Yang G, Long H et al. Fabrication and optical properties of Au nanoparticle array. Acta Physica Sinica. 57(6), 3862-3867(2008).
王凯, 杨光, 龙华 等. 金纳米颗粒的有序制备及其光学特性. 物理学报. 57(6), 3862-3867(2008).

【3】Xu D H, Hu Q, Peng R W et al. Plasmonic propagation and spectral splitting in nanostructured metal wires. Acta Physica Sinica. 64(9), (2015).
徐地虎, 胡青, 彭茹雯 等. 金属微结构纳米线中等离激元传播和分光特性. 物理学报. 64(9), (2015).

【4】Son K R, Lee B R, Jang M H et al. Enhanced light emission from AlGaN/GaN multiple quantum wells using the localized surface plasmon effect by aluminum nanoring patterns. Photonics Research. 6(1), (2018).

【5】Zhang C, Tang N, Shang L L et al. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells. Scientific Reports. 7, (2017).

【6】Shin H W, Son K R and Kim T G. Localized surface plasmon-enhanced light emission using platinum nanorings in deep ultraviolet-emitting AlGaN quantum wells. Optics Letters. 41(1), 88-91(2016).

【7】Wang J X, Yan J C, Guo Y N et al. Recent progress of research on III-nitride deep ultraviolet light-emitting diode. Scientia Sinica(Physica,Mechanica & Astronomica). 45(6), (2015).
王军喜, 闫建昌, 郭亚楠 等. 氮化物深紫外LED研究新进展. 中国科学: 物理学力学天文学. 45(6), (2015).

【8】Lee I H, Jang L W and Polyakov A Y. Performance enhancement of GaN-based light emitting diodes by the interaction with localized surface plasmons. Nano Energy. 13, 140-173(2015).

【9】Hong S H, Kim J J, Kang J W et al. Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles. Nanotechnology. 26(38), (2015).

【10】Shen Y, Zhou J H, Liu T R et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nature Communications. 4, (2013).

【11】Mayer K M and Hafner J H. Localized surface plasmon resonance sensors. Chemical Reviews. 111(6), 3828-3857(2011).

【12】Li D, Qin L, Xiong X et al. Exchange of electric and magnetic resonances in multilayered metal/dielectric nanoplates. Optics Express. 19(23), 22942-22949(2011).

【13】Bao Y J, Peng R W, Shu D J et al. Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array. Physical Review Letters. 101(8), (2008).

【14】Ahmad H, Ruslan N E, Ali Z A et al. Ag-nanoparticle as a Q switched device for tunable C-band fiber laser. Optics Communications. 381, 85-90(2016).

【15】Lee S J, Baik J M and Moskovits M. Polarization-dependent surface-enhanced Raman scattering from a silver-nanoparticle-decorated single silver nanowire. Nano Letters. 8(10), 3244-3247(2008).

【16】Jeong D H, Zhang Y X and Moskovits M. Polarized surface enhanced Raman scattering from aligned silver nanowire rafts. The Journal of Physical Chemistry B. 108(34), 12724-12728(2004).

【17】Serrano A. Rodríguez de la Fuente O, García M A. Extended and localized surface plasmons in annealed Au films on glass substrates. Journal of Applied Physics. 108(7), (2010).

【18】Zhou Z T, Yang L, Yao J et al. Fabrication of multilayer metal-dielectric nanoparticles and their optical properties. Acta Physica Sinica. 62(18), (2013).
周振婷, 杨理, 姚洁 等. 多层金属纳米点阵的制备及其光学性质的研究. 物理学报. 62(18), (2013).

【19】Li R, Zhu Y B, Di Y et al. Fabrication of ordered Au nanoparticles array and its optical absorption properties. Acta Physica Sinica. 62(19), (2013).
李娆, 朱亚彬, 狄月 等. 有序金纳米颗粒阵列的制备及光吸收特性研究. 物理学报. 62(19), (2013).

【20】Kelf T A, Sugawara Y, Cole R M et al. Localized and delocalized plasmons in metallic nanovoids. Physical Review B. 74(24), (2006).

【21】Wierer J J, Krames M R, Epler J E et al. InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Applied Physics Letters. 84(19), 3885-3887(2004).

【22】Chang S J, Shen C F, Chen W S et al. Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography. Applied Physics Letters. 91(1), (2007).

【23】Kong L Q, Zhang C J and Huang S L. Effect of Cr position and metal deposition direction on two-dimensional Ag nanoparticle array structure during nanosphere lithography. Acta Physica Sinica. 61(3), (2012).
孔令琦, 张春婧, 黄胜利. 铬过渡层位置及金属沉积角度对纳米球刻蚀法制备二维银纳米点阵结构的影响. 物理学报. 61(3), (2012).

【24】Parsons J, Hendry E, Burrows C P et al. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Physical Review B. 79(7), (2009).

【25】Braun J, Gompf B, Kobiela G et al. How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Physical Review Letters. 103(20), (2009).

【26】Chen Z X, Wan W, Zhang B J et al. Enhanced light emission from InGaN/GaN quantum wells by using surface plasmonic resonances of silver nanoparticle array. Chinese Physics B. 23(12), (2014).

【27】Murray W A, Astilean S and Barnes W L. Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array. Physical Review B. 69(16), (2004).

【28】Gordon R, Brolo A G, Sinton D et al. Resonant optical transmission through hole-arrays in metal films: physics and applications. Laser & Photonics Reviews. 4(2), 311-335(2009).

【29】Xiong C, Zhang B, Kang X N et al. Diffracted transmission effects of GaN and polymer two-dimensional square-lattice photonic crystals. Optics Express. 17(26), 23684-23689(2009).

【30】Barnes W L, Murray W A, Dintinger J et al. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Physical Review Letters. 92(10), (2004).

【31】Mochizuki Y, Fujii M, Hayashi S et al. Enhancement of photoluminescence from silicon nanocrystals by metal nanostructures made by nanosphere lithography. Journal of Applied Physics. 106(1), (2009).

引用该论文

Wei Wan, Zhanxu Chen, Yongzhu Chen, Gengyan Chen, Jiayong Lin. Optical Properties of Periodic Silver Nanoparticle Arrays[J]. Laser & Optoelectronics Progress, 2019, 56(13): 132501

万巍, 陈湛旭, 陈泳竹, 陈耿炎, 林家勇. 周期性银纳米颗粒阵列的光学特性[J]. 激光与光电子学进展, 2019, 56(13): 132501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF