首页 > 论文 > 光学学报 > 40卷 > 10期(pp:1002001--1)

85Rb喷泉钟的低相位噪声微波频率综合器设计

Design of Low Phase Noise Microwave Frequency Synthesizer for 85Rb Fountain Clock

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用低相位噪声频率合成和锁相技术,为世界首台 85Rb喷泉钟研制了低相位噪声微波频率综合器,实现了低相位噪声的钟频信号输出。当该微波频率综合器的频率分辨率为0.7 μHz,输出频率为3.036 GHz时,在傅里叶频率1 Hz,100 Hz和10 kHz处的单边带相位噪声谱密度分别为-97 dBc·Hz -1,-127 dBc·Hz -1和-130 dBc·Hz -1,剩余相位噪声比本机振荡器绝对噪声低20 dB以上。研究了量子散弹噪声和Dick效应,发现在微波链路噪声为主要噪声的情况下, 85Rb喷泉钟的稳定度与目前 87Rb和 133Cs喷泉钟相当。微波系统对 85Rb喷泉钟稳定度的贡献为2.9×10 -13τ-1/2,其中频率综合器的剩余相位噪声贡献为1.2×10 -14τ-1/2(τ为积分时间)。利用该微波综合器,可以实现 85Rb喷泉钟的高稳定运行,并为其性能的提升打下基础。

Abstract

We have developed a low-noise microwave frequency synthesizer for the world''s first 85Rb fountain clock. The setup is based on the techniques of low phase-noise frequency synthesis and phase-locking, which can realize the clock frequency signal output with low phase noise. When the output frequency is about 3.035 GHz and the frequency resolution is 0.7 μHz, the single-sideband phase noise densities at 1 Hz, 100 Hz, and 10 kHz Fourier frequency are -97 dBc·Hz -1, -127 dBc·Hz -1, and -130 dBc·Hz -1 , respectively. Moreover, the residual phase noise of the microwave frequency synthesizer is lower by 20 dB than that of the local oscillator. By comparing the contributions of quantum project noise and Dick effect, we show that the stability of the 85Rb fountain clock is comparable to those of 87Rb clock and 133Cs clock, where the noise from a microwave system is the main noise source. The stability caused by the microwave source for the 85Rb fountain clock is estimated as 2.9×10 -13τ-1/2(τ is integration time), among which the contribution of the residual phase noise from the frequency synthesizer is 1.2×10 -14τ-1/2. The synthesizer is helpful to realize the operation of the 85Rb fountain clock with high stability and is expected to be the basis of the future improvement in clock performances.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.3

DOI:10.3788/AOS202040.1002001

所属栏目:原子与分子物理学

基金项目:中国科学院战略性先导科技专项;

收稿日期:2019-12-25

修改稿日期:2020-02-21

网络出版日期:2020-05-01

作者单位    点击查看

张宁:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
王倩:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
赵伟靖:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
姬清晨:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800上海大学理学院, 上海 200444
魏荣:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800

联系人作者:魏荣(weirong@siom.ac.cn)

备注:中国科学院战略性先导科技专项;

【1】Wynands R, Weyers S. Atomic fountain clocks [J]. Metrologia. 2005, 42(3): S64-S79.

【2】Li R X, Gibble K, Szymaniec K. Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts [J]. Metrologia. 2011, 48(5): 283-289.

【3】Wang Q, Wei R, Wang Y Z. Atomic fountain frequency standard: principle and development [J]. Acta Physica Sinica. 2018, 67(16): 163202.
王倩, 魏荣, 王育竹. 原子喷泉频标: 原理与发展 [J]. 物理学报. 2018, 67(16): 163202.

【4】Weyers S, Gerginov V, Kazda M, et al. Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks [J]. Metrologia. 2018, 55(6): 789-805.

【5】Heavner T P, Donley E A, Levi F, et al. First accuracy evaluation of NIST-F2 [J]. Metrologia. 2014, 51(3): 174-182.

【6】Guéna J, Abgrall M, Clairon A, et al. Contributing to TAI with a secondary representation of the SI second [J]. Metrologia. 2014, 51(1): 108-120.

【7】Yu C H, Zhong W C, Estey B, et al. Atom-interferometry measurement of the fine structure constant [J]. Annalen Der Physik. 2019, 531(5): 1800346.

【8】Tanabe T, Akamatsu D, Kobayashi T, et al. Improved frequency measurement of the 1S0-3P0 clock transition in 87Sr using a Cs fountain clock as a transfer oscillator [J]. Journal of the Physical Society of Japan. 2015, 84(11): 115002.

【9】Marion H. Pereira dos Santos F, Abgrall M, et al. Search for variations of fundamental constants using atomic fountain clocks [J]. Physical Review Letters. 2003, 90(15): 150801.

【10】Berengut J C, Flambaum V V, Kava E M. Search for variation of fundamental constants and violations of fundamental symmetries using isotope comparisons [J]. Physical Review A. 2011, 84(4): 042510.

【11】Gibble K, Verhaar B J. Eliminating cold-collision frequency shifts [J]. Physical Review A. 1995, 52(4): 3370-3373.

【12】Kokkelmans S, Verhaar B J, Gibble K, et al. Predictions for laser-cooled Rb clocks [J]. Physical Review A. 1997, 56(6): R4389-R4392.

【13】Wang Q, Zhang N, Guang W, et al. Precision measurements of the ground-state hyperfine splitting of Rb85 using an atomic fountain clock [J]. Physical Review A. 2019, 100(2): 022510.

【14】Fertig C, Gibble K. Measurement and cancellation of the cold collision frequency shift in an 87Rb Fountain clock [J]. Physical Review Letters. 2000, 85(8): 1622-1625.

【15】Weyers S, Lipphardt B, Schnatz H. Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser [J]. Physical Review A. 2009, 79(3): 031803.

【16】Li W B, Du Y B, Li H, et al. Development of low phase noise microwave frequency synthesizers for reducing Dick effect of Cs fountain clocks [J]. AIP Advances. 2018, 8(9): 095311.

【17】Rovera G D, Santarelli G, Clairon A. Frequency synthesis chain for the atomic fountain primary frequency standard [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1996, 43(3): 354-358.

【18】Chambon D, Lours M, Chapelet F, et al. Design and metrological features of microwave synthesizers for atomic fountain frequency standard [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2007, 54(4): 729-735.

【19】Santarelli G, Governatori G, Chambon D, et al. Switching atomic fountain clock microwave interrogation signal and high-resolution phase measurements [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2009, 56(7): 1319-1326.

【20】Liu N, Lin P, Wang P, et al. The design of microwave synthesizer for cesium atomic fountain clock of NIM [J]. Acta Metrologica Sinica. 2010, 31(3): 274-277.

【21】Yu M Y, Wang Y N, Wan J Y, et al. Low phase noise microwave frequency synthesizer for cold atom clock [J]. AIP Advances. 2019, 9(4): 045223.

【22】Hartnett J G, Nand N R, Parker S R, et al. Radio frequency signals synthesised from independent cryogenic sapphire oscillators [J]. Electronics Letters. 2014, 50(4): 294-295.

【23】Xie X P, Bouchand R, Nicolodi D, et al. Photonic microwave signals with zeptosecond-level absolute timing noise [J]. Nature Photonics. 2017, 11(1): 44-47.

【24】Didier A, Millo J, Grop S, et al. Ultra-low phase noise all-optical microwave generation setup based on commercial devices [J]. Applied Optics. 2015, 54(12): 3682-3686.

【25】Li T, Huang J C, Qu Q Z, et al. Space qualified microwave source for cold atom clock operating in orbit [J]. Review of Scientific Instruments. 2018, 89(11): 113115.

【26】Santarelli G, Audoin C, Makdissi A, et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1998, 45(4): 887-894.

【27】Greenhall C A. A derivation of the long-term degradation of a pulsed atomic frequency standard from a control-loop model [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1998, 45(4): 895-898.

【28】Riehle F. Frequency standards: basics and applications [M]. Weinheim: John Wiley & Sons. 2006, 74.

【29】Du Y B, Wei R, Dong R C, et al. Recent improvements on the atomic fountain clock at SIOM [J]. Chinese Physics B. 2015, 24(7): 070601.

引用该论文

Zhang Ning,Wang Qian,Zhao Weijing,Ji Qingchen,Wei Rong. Design of Low Phase Noise Microwave Frequency Synthesizer for 85Rb Fountain Clock[J]. Acta Optica Sinica, 2020, 40(10): 1002001

张宁,王倩,赵伟靖,姬清晨,魏荣. 85Rb喷泉钟的低相位噪声微波频率综合器设计[J]. 光学学报, 2020, 40(10): 1002001

被引情况

【1】姬清晨,董日昌,王倩,张宁,赵伟靖,王燕,魏荣. 基于型材网格平台的紧凑 85Rb喷泉钟光路设计. 光学学报, 2020, 40(18): 1802001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF