首页 > 论文 > 中国激光 > 46卷 > 9期(pp:904002--1)

基于光谱估计与多光谱技术的光学元件表面疵病检测

Measurement of Surface Defects of Optical Elements Based on Spectral Estimation and Multispectral Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现精密光学元件表面疵病的高效测量和精确统计,提出了一种基于光谱估计和多光谱技术的光学元件表面疵病检测方法。该方法利用光谱估计提取白光图像中不同波长的单光谱疵病图像,并合成多光谱疵病图像,然后采用优化后的OTSU(Otsu Image Segmentation Algorithm)分别对单光谱与多光谱疵病图像进行分析。基于该方法搭建了光学元件表面疵病检测装置,获得了白光照明条件下光学元件表面疵病的图像。实验结果表明,与原始白光图像相比,合成多光谱图像的疵病检出数量提升了1.85倍,疵病检出面积最大增加了6.0倍,检测效率得到明显提高。根据光学元件表面疵病的特性选取不同波长组合来生成单光谱与多光谱图像,可更加高效精确地检测出传统检测技术不易检出的疵病信息。

Abstract

A method based on spectral estimation and a multispectral technique is proposed to accurately and efficiently measure surface efects of optical elements. Using this method, we estimate and obtain single spectral defect images at different wavelengths and compose a multispectral defect image from different single spectral defect images. The optimized OTSU (Otsu Image Segmentation Algorithm) is used to analyze and compare the images. A defect measurement system of optical elements is developed, and color defect images are obtained upon white-light illumination. The experimental and analytical results show that single spectral or composing multispectral images from different wavelength combinations detect more defects accurately and efficiently. In the composite image, the number of detected defects increases by 1.85 times, and the area of detected defects increases by approximately 6.0 times for different kinds of defects compared to the original white-light image. The composing images from optimized wavelength combinations can be used to detect and obtain different small defects with high efficiency and high quality.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/CJL201946.0904002

所属栏目:测量与计量

基金项目:国家自然科学基金、国家科技重大专项、广西高校光电信息处理重点实验室开放基金;

收稿日期:2019-03-05

修改稿日期:2019-05-06

网络出版日期:2019-09-01

作者单位    点击查看

杨言若:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
步扬:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
徐静浩:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
王少卿:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
王向朝:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
李杰:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621000

联系人作者:步扬(buyang@siom.ac.cn)

备注:国家自然科学基金、国家科技重大专项、广西高校光电信息处理重点实验室开放基金;

【1】The British Standards Institution. Optics and photonics: preparation of drawings for optical elements and systems: part 7 surface imperfection tolerances: ISO 10110-7. UK: BSI Standards Limited. (2008).

【2】General Administration of Quality Supervision, Inspection, Quarantine of the People''''s Republic of China, . (2006).
中华人民共和国国家质量监督检验检疫总局. (2006).

【3】Liu Z Y, Zhang Y H, Ding J J et al. Propagation of a filamentary femtosecond laser beam with high intensities at an air-solid interface. Chinese Optics Letters. 15(2), (2017).

【4】Shavit O, Ferber Y, Papeer J et al. Femtosecond laser-induced damage threshold in snow micro-structured targets. High Power Laser Science and Engineering. 6, (2018).

【5】Bercegol H, Bouchut P R, Lamaignère L et al. The impact of laser damage on the lifetime of optical components in fusion lasers. Proceedings of SPIE. 5273, 312-324(2003).

【6】Zhang X, Zhou W, Dai W J et al. Surface phase defects induced downstream laser intensity modulation in high-power laser facility. High Power Laser Science and Engineering. 4, (2016).

【7】Dai M K and Xu D Y. The present situation of imperfections testing and researching on the optical components. Optical Instruments. 18(3), 33-36(1996).
戴名奎, 徐德衍. 光学元件的疵病检验与研究现状. 光学仪器. 18(3), 33-36(1996).

【8】Baker L R. Microscope image comparator. Optica Acta: International Journal of Optics. 31(6), 611-614(1984).

【9】Baker L R. Inspection of surface flaws by comparator microscopy. Applied Optics. 27(22), 4620-4625(1988).

【10】Baker L R. On-machine measurement of roughness, waviness, and flaws. Proceedings of SPIE. 1333, 248-256(1990).

【11】Liberati F. Measure of surface and bulk defects in any transmitting or reflecting optical component. Proceedings of SPIE. 1781, 170-174(1993).

【12】Yang Y Y, Lu C H, Liang J et al. Microscopic dark-field scattering imaging and digitalization evaluation system of defects on optical devices precision surface. Acta Optica Sinica. 27(6), 1031-1038(2007).
杨甬英, 陆春华, 梁蛟 等. 光学元件表面缺陷的显微散射暗场成像及数字化评价系统. 光学学报. 27(6), 1031-1038(2007).

【13】Liu D, Wang S T, Cao P et al. Dark-field microscopic image stitching method for surface defects evaluation of large fine optics. Optics Express. 21(5), 5974-5987(2013).

【14】Luo M, Bu Y, Xu J H et al. Optical element surface defect measurement based on multispectral technique. Chinese Journal of Lasers. 44(1), (2017).
罗茂, 步扬, 徐静浩 等. 基于多光谱技术的光学元件表面疵病检测. 中国激光. 44(1), (2017).

【15】Technology Organization. TR-SET-065-P3. Vagni F. Survey of hyperspectral, multispectral imaging technologies. Neuilly-sur-Seine Cedex, France: North Atlantic Treaty Organization, Research. (2007).

【16】Lenz R, Meer P and Hauta-Kasari M. Spectral-based illumination estimation and color correction. Color Research & Application. 24(2), 98-111(1999).

【17】Vala H J and Baxi A. A Review on OTSU image segmentation algorithm. International Journal of Advanced Research in Computer Engineering & Technology. 2(2), 387-389(2013).

引用该论文

Yang Yanruo,Bu Yang,Xu Jinghao,Wang Shaoqing,Wang Xiangzhao,Li Jie. Measurement of Surface Defects of Optical Elements Based on Spectral Estimation and Multispectral Technique[J]. Chinese Journal of Lasers, 2019, 46(9): 0904002

杨言若,步扬,徐静浩,王少卿,王向朝,李杰. 基于光谱估计与多光谱技术的光学元件表面疵病检测[J]. 中国激光, 2019, 46(9): 0904002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF