首页 > 论文 > 中国激光 > 46卷 > 7期(pp:701009--1)

压缩态光场制备中的单频激光源噪声分析

Noise Analysis of Single-Frequency Laser Source in Preparation of Squeezed-State Light Field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用自零拍探测法和分析腔转换法,分别对适用于音频段压缩态光场制备的全固态单频激光器和光纤激光器的正交分量噪声进行了对比分析。结果表明,1064 nm全固态单频激光器的正交振幅噪声和正交相位噪声分别在分析频率大于1.5 MHz和5 MHz之后即达到散粒噪声基准,光纤激光器在测量带宽范围内均高于散粒噪声基准。采用半导体放大器(SOA) 降噪系统后,光纤激光器的低频段(<620 kHz)正交振幅噪声小于全固态单频激光器。本研究结果为低频段压缩态光场的研究提供了单频光源选择方案;SOA降噪系统可有效抑制低频段激光的正交分量噪声,为音频段压缩态光场的制备提供了依据。

Abstract

This study uses the self-homodyne detection and analysis cavity conversion method to compare the quadrature component noises of all-solid-state single-frequency laser and fiber laser suitable for the preparation of the squeezed-state light field in audio-band frequencies. The results show that the quadrature amplitude and quadrature phase noises of the all-solid-state, single-frequency, 1064 nm laser reach the shot-noise limitation after analysis frequencies of 1.5 MHz and 5 MHz, respectively. Moreover, the measurement bandwidth of the fiber laser is higher than that of the shot-noise limitation. With the semiconductor optical amplifier (SOA) noise-reduction system, the low-frequency-bandwidth (<620 kHz) quadrature amplitude noise of the fiber laser is smaller than that of the all-solid-state single-frequency laser. This result provides a single-frequency source-selection scheme for the study of the low-frequency-bandwidth squeezed-state light field. The SOA noise-reduction system can effectively suppress the quadrature component noise of the low-frequency-bandwidth laser and provide an evidence for the preparation of the squeezed-state light field in audio-band frequencies.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN241

DOI:10.3788/CJL201946.0701009

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金、山西省三晋学者特聘教授项目、山西省“1331”重点建设学科;

收稿日期:2019-01-05

修改稿日期:2019-02-25

网络出版日期:2019-07-01

作者单位    点击查看

史少平:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
杨文海:中国空间技术研究院西安分院, 陕西 西安 710100
郑耀辉:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
王雅君:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:王雅君(wangyajun_166@163.com)

备注:国家自然科学基金、山西省三晋学者特聘教授项目、山西省“1331”重点建设学科;

【1】Yin J, Cao Y, Li Y H et al. Satellite-based entanglement distribution over 1200 kilometers. Science. 356(6343), 1140-1144(2017).

【2】Huo M R, Qin J L, Sun Y R et al. Generation of intensity difference squeezed state of light at optical fiber communication wavelength. Journal of Quantum Optics. 24(2), 134-140(2018).
霍美如, 秦际良, 孙颍榕 等. 光纤通信波段强度差压缩态光场的实验制备. 量子光学学报. 24(2), 134-140(2018).

【3】Bai S, Wang J Y, Qiang J et al. Predictive filtering-based fast reacquisition approach for space-borne acquisition, tracking, and pointing systems. Optics Express. 22(22), 26462-26475(2014).

【4】Lin Y, Zhou Z Y and Wang R W. Opto-heterodyne measurement of thickness of coated films. Chinese Journal of Lasers. 15(11), 652-655(1988).
林跃, 周志尧, 王润文. 超外差光学膜厚的精密测量. 中国激光. 15(11), 652-655(1988).

【5】Song S Y, Li Z L, Gao Y H et al. Swept source optical coherence tomography system for transdermal drug delivery imaging by microneedles. Chinese Journal of Lasers. 45(8), (2018).
宋思雨, 李中梁, 高云华 等. 用于微针经皮给药成像的扫频OCT系统. 中国激光. 45(8), (2018).

【6】Chen H F, Sun Y Q, Wang Y W et al. High-precision laser tracking measurement method and experimental study. Chinese Journal of Lasers. 45(1), (2018).
陈洪芳, 孙衍强, 王亚韦 等. 高精度激光追踪测量方法及实验研究. 中国激光. 45(1), (2018).

【7】Ji N K, Zhang F M, Qu X H et al. Ranging technology for frequency modulated continuous wave laser based on phase difference frequency measurement. Chinese Journal of Lasers. 45(11), (2018).
吉宁可, 张福民, 曲兴华 等. 基于相位差测频的调频连续波激光测距技术. 中国激光. 45(11), (2018).

【8】Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger. Physical Review Letters. 116, (2016).

【9】Horrom T, Singh R, Dowling J P et al. Quantum-enhanced magnetometer with low-frequency squeezing. Physical Review A. 86(2), (2012).

【10】Taylor M A, Janousek J, Daria V et al. Biological measurement beyond the quantum limit. Nature Photonics. 7(3), 229-233(2013).

【11】Dwyer S E. Quantum noise reduction using squeezed states in LIGO Cambridge, Massachusetts,. USA: Massachusetts Institute of Technology. (2013).

【12】Goda K. McKenzie K, Mikhailov E E, et al. Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator. Physical Review A. 72(4), (2005).

【13】Yuen H P. Chan V W S. Noise in homodyne and heterodyne detection. Optics Letters. 8(3), 177-179(1983).

【14】Villar A S. The conversion of phase to amplitude fluctuations of a light beam by an optical cavity. American Journal of Physics. 76(10), 922-929(2008).

【15】Yang W H, Wang Y J, Li Z X et al. Compact and low-noise intracavity frequency-doubled single-frequency Nd∶YAP/KTP laser. Chinese Journal of Lasers. 41(5), (2014).
杨文海, 王雅君, 李志秀 等. 小型化、低噪声内腔倍频Nd∶YAP/KTP单频激光器. 中国激光. 41(5), (2014).

【16】Wang Y J, Zheng Y H, Shi Z et al. High-power single-frequency Nd∶YVO4 green laser by self-compensation of astigmatisms. Laser Physics Letters. 9(7), 506-510(2012).

【17】Yang C S, Guan X C, Zhao Q L et al. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser. Optics Express. 25(12), 13324-13331(2017).

【18】Zhao Q L, Zhou K J, Wu Z S et al. Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser. Optics Letters. 43(1), 42-45(2018).

【19】Koyama F and Uenohara H. Noise suppression and optical ASE modulation in saturated semiconductor optical amplifiers. [C]∥Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004., November 7-10, 2004, Pacific Grove, CA, USA. New York: IEEE. 98-102(2004).

【20】Yamada M. Analysis of intensity and frequency noises in semiconductor optical amplifier. IEEE Journal of Quantum Electronics. 48(8), 980-990(2012).

【21】Li Z X, Ma W G, Yang W H et al. Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation. Optics Letters. 41(14), 3331-3334(2016).

【22】Zhang W H, Yang W H, Shi S P et al. Mode matching in preparation of squeezed field with high compressibility. Chinese Journal of Lasers. 44(11), (2017).
张文慧, 杨文海, 史少平 等. 高压缩度压缩态光场制备中的模式匹配. 中国激光. 44(11), (2017).

【23】Chen C Y, Li Z X, Jin X L et al. Resonant photodetector for cavity- and phase-locking of squeezed state generation. Review of Scientific Instruments. 87(10), (2016).

【24】Hildebrandt M, Buesche S, Wessels P et al. Brillouin scattering spectra in high-power single frequency ytterbium doped fiber amplifiers. Optics Express. 16(20), 15970-15979(2008).

【25】Fleyer M, Heerschap S, Cranch G A et al. Noise induced in optical fibers by double Rayleigh scattering of a laser with a 1/f ν frequency noise . Optics Letters. 41(6), 1265-1268(2016).

【26】Danion G, Bondu F, Loas G et al. GHz bandwidth noise eater hybrid optical amplifier: design guidelines. Optics Letters. 39(14), 4239-4242(2014).

【27】Li Z X, Yang W H, Wang Y J et al. Optimal design of single-frequency laser system for 795 nm squeezed light source. Chinese Journal of Lasers. 42(9), (2015).
李志秀, 杨文海, 王雅君 等. 用于795 nm压缩光源的单频激光系统的优化设计. 中国激光. 42(9), (2015).

【28】Yao L T, Feng J X, Gao Y H et al. Generation of a low-frequency squeezed states at telecommunication wavelength. Acta Sinica Quantum Optica. 23(2), 99-104(2017).
要立婷, 冯晋霞, 高英豪 等. 光通信波段低频压缩态光场的实验制备. 量子光学学报. 23(2), 99-104(2017).

引用该论文

Shaoping Shi,Wenhai Yang,Yaohui Zheng,Yajun Wang. Noise Analysis of Single-Frequency Laser Source in Preparation of Squeezed-State Light Field[J]. Chinese Journal of Lasers, 2019, 46(7): 0701009

史少平,杨文海,郑耀辉,王雅君. 压缩态光场制备中的单频激光源噪声分析[J]. 中国激光, 2019, 46(7): 0701009

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF