首页 > 论文 > 光学学报 > 40卷 > 21期(pp:2122001--1)

基于衍射谱分析的全芯片光源掩模联合优化关键图形筛选 (封面文章)

Critical Pattern Selection Based on Diffraction Spectrum Analysis for Full-Chip Source Mask Optimization (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种全芯片光源掩模联合优化的关键图形筛选方法,用图形的主要频率表征图形的特征,用主要频率的位置和轮廓信息描述主要频率在频域上的分布特征。设计了相应的主要频率提取方法、覆盖规则、聚类方法以及关键图形筛选方法,实现了全芯片光源掩模联合优化的关键图形筛选。采用荷兰ASML公司的商用计算光刻软件Tachyon进行了仿真验证,与ASML公司同类技术的对比结果表明,本方法获得的工艺窗口优于ASML Tachyon方法。

Abstract

In this paper, a critical pattern selection method for full-chip source mask optimization is proposed. The critical frequency of the pattern represents the characteristics of the pattern. The location and contour information of critical frequency are used to describe the distribution characteristics of the critical frequency in the frequency domain. The corresponding critical frequency extraction method, covering rules, grouping method, and critical pattern selection method are designed to realize the critical pattern selection of the full-chip source mask optimization. Commercial computational lithography software Tachyon of ASML company is used for simulation verification. The comparison with the similar technique of ASML company shows that the process window obtained by this method is better than the ASML Tachyon method.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN305.7

DOI:10.3788/AOS202040.2122001

所属栏目:光学设计与制造

基金项目:国家02科技重大专项、上海市自然科学基金;

收稿日期:2020-06-15

修改稿日期:2020-07-15

网络出版日期:2020-11-01

作者单位    点击查看

廖陆峰:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
李思坤:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
王向朝:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
张利斌:中国科学院大学材料与光电研究中心, 北京 100049中国科学院微电子研究所集成电路先导工艺研发中心, 北京 100029
张双:中国科学院大学材料与光电研究中心, 北京 100049中国科学院微电子研究所集成电路先导工艺研发中心, 北京 100029
高澎铮:中国科学院大学材料与光电研究中心, 北京 100049中国科学院微电子研究所集成电路先导工艺研发中心, 北京 100029
韦亚一:中国科学院大学材料与光电研究中心, 北京 100049中国科学院微电子研究所集成电路先导工艺研发中心, 北京 100029
施伟杰:东方晶源微电子科技有限公司, 北京 100176

联系人作者:李思坤(lisikun@siom.ac.cn); 王向朝(wxz26267@siom.ac.cn);

备注:国家02科技重大专项、上海市自然科学基金;

【1】Quirk M, Serda J. Semiconductor manufacturing technology [M]. New Jersey: Prentice Hall. 2001, 367-412.

【2】Washington: SPIE. 28- [M]. Wong A K. Resolution enhancement techniques in optical lithography. Bellingham. 2001, 30: 91-180.

【3】38- [M]. Mack C. Fundamental principles of optical lithography: the science of microfabrication. Chichester, UK: John Wiley & Sons, Ltd. 2007, 56: 411-419.

【4】Melville D, Rosenbluth A E, Tian K, et al. Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations [J]. Proceedings of SPIE. 2010, 7640: 764006.

【5】Rosenbluth A E, Bukofsky S J, Hibbs M S, et al. Optimum mask and source patterns to print a given shape [J]. Proceedings of SPIE. 2001, 4346: 486-502.

【6】Socha R, Shi X. LeHoty D. Simultaneous source mask optimization (SMO) [J]. Proceedings of SPIE. 2005, 5853: 180-193.

【7】Zhang D Q, Chua G, Foong Y, et al. Source mask optimization methodology (SMO) and application to real full chip optical proximity correction [J]. Proceedings of SPIE. 2012, 8326: 83261V.

【8】Pei J, Shao F. ElSewefy O, et al. Compatibility of optimized source over design changes in the foundry environment [J]. Proceedings of SPIE. 2013, 8683: 86831M.

【9】Tian K, Fakhry M, Dave A, et al. Applicability of global source mask optimization to 22/20 nm node and beyond [J]. Proceedings of SPIE. 2011, 7973: 79730C.

【10】Ma X, Arce G R. Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography [J]. Optics Express. 2009, 17(7): 5783-5793.

【11】Wu X F, Liu S Y, Li J, et al. Efficient source mask optimization with Zernike polynomial functions for source representation [J]. Optics Express. 2014, 22(4): 3924-3937.

【12】Li J, Liu S Y, Lam E Y. Efficient source and mask optimization with augmented Lagrangian methods in optical lithography [J]. Optics Express. 2013, 21(7): 8076-8090.

【13】Yu J C, Yu P. Gradient-based fast source mask optimization (SMO) [J]. Proceedings of SPIE. 2011, 7973: 797320.

【14】Shen Y J, Peng F, Zhang Z R. Semi-implicit level set formulation for lithographic source and mask optimization [J]. Optics Express. 2019, 27(21): 29659-29668.

【15】Shen Y J, Peng F, Huang X Y, et al. Adaptive gradient-based source and mask co-optimization with process awareness [J]. Chinese Optics Letters. 2019, 17(12): 121102.

【16】Li S K, Wang X Z, Bu Y. Robust pixel-based source and mask optimization for inverse lithography [J]. Optics & Laser Technology. 2013, 45: 285-293.

【17】Lai K, Rosenbluth A E, Bagheri S, et al. Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process [J]. Proceedings of SPIE. 2009, 7274: 72740A.

【18】Wang Z, Ma X, Arce G R, et al. Information theoretical approaches in computational lithography [J]. Optics Express. 2018, 26(13): 16736-16751.

【19】Fühner T, Erdmann A, Evanschitzky P. Simulation-based EUV source and mask optimization [J]. Proceedings of SPIE. 2008, 7122: 71221Y.

【20】DeMaris D L, Gabrani M. -03-04[2020-05-30] [P/OL]. Volkova E. Method of optimization of a manufacturing process of an integrated circuit layout: US8667427. 2014.DeMaris D L, Gabrani M. -03-04[2020-05-30] [P/OL]. Volkova E. Method of optimization of a manufacturing process of an integrated circuit layout: US8667427. 2014.

【21】Tsai M C, Hsu S, Chen L, et al. Full-chip source and mask optimization [J]. Proceedings of SPIE. 2011, 7973: 79730A.

【22】Wong A K. Optical imaging in projection microlithography [M]. Bellingham, Washington: SPIE. 2005, 67-69.

【23】Socha R. Freeform and SMO [J]. Proceedings of SPIE. 2011, 7973: 797305.

【24】Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to algorithms[M]. 3rd ed: , 2009, 414-443.

【25】Deng Y, Zou Y, Yoshimoto K, et al. Considerations in source-mask optimization for logic applications [J]. Proceedings of SPIE. 2010, 7640: 76401J.

【26】Foundation IP for 180 nm to sub-12 nm process nodes [2020-05-20].https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/index.html.[2020-05-20]. 0.

引用该论文

Liao Lufeng,Li Sikun,Wang Xiangzhao,Zhang Libin,Zhang Shuang,Gao Pengzheng,Wei Yayi,Shi Weijie. Critical Pattern Selection Based on Diffraction Spectrum Analysis for Full-Chip Source Mask Optimization[J]. Acta Optica Sinica, 2020, 40(21): 2122001

廖陆峰,李思坤,王向朝,张利斌,张双,高澎铮,韦亚一,施伟杰. 基于衍射谱分析的全芯片光源掩模联合优化关键图形筛选[J]. 光学学报, 2020, 40(21): 2122001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF