首页 > 论文 > 光学学报 > 40卷 > 21期(pp:2129002--1)

汤姆孙散射系统中发黑材料的表面散射特性测量

Measurement of Surface Scattering Characteristics of Black Materials in Thomson Scattering System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文研制一套全自动散射特性测试平台,并使用该测试平台对汤姆孙散射诊断系统中杂散光吸光材料的表面散射特性开展实验测量研究。在1064 nm的波段下,该测试平台对双向反射分布函数的本底噪声水平优于2×10 -5sr -1。利用该测试平台测量反射镜、不锈钢、发黑铝合金和发黑涂层等多种材料的表面散射特性。依据相关测量结果,“科大一环”汤姆孙散射诊断系统采用了Avian Black-S发黑涂料以及Metal Velvet TM发黑铝箔用于吸收杂散光。利用测量结果给出多种材料的ABg模型参数,为杂散光追踪模拟计算提供必要数据。

Abstract

This paper developes a set of automatic platform for testing scattering characteristics and uses this test platform for the experimental measurements on the surface scattering characteristics of stray light absorbing materials in a Thomson scattering diagnostic system. In the 1064 nm band, the noise floor of the test platform for the bidirectional reflection distribution function is better than 2×10 -5 sr -1. Furthermore, this test platform is employed to measure the surface scattering characteristics of standard white plates, stainless steel, black aluminum alloys, black paints, and other materials. The experimental results show that the Thomson scattering diagnostic system on the “Keda Torus” setup adopted Avian Black-S black paint and Metal Velvet TM black foil to absorb stray light. In the end, the measurement results are utilized to provide ABg model parameters for a variety of materials, offering necessary data for the ray tracing simulation associated with stray light.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O536

DOI:10.3788/AOS202040.2129002

所属栏目:散射

基金项目:国家重大科研装备研制项目、国家重点研发计划;

收稿日期:2020-07-10

修改稿日期:2020-07-24

网络出版日期:2020-11-01

作者单位    点击查看

王鹏:中国科学技术大学工程与应用物理系近地空间重点实验室, 安徽 合肥 230026
袁鹏:中国科学技术大学工程与应用物理系近地空间重点实验室, 安徽 合肥 230026
谭伟强:中国科学技术大学工程与应用物理系近地空间重点实验室, 安徽 合肥 230026
郑坚:中国科学技术大学工程与应用物理系近地空间重点实验室, 安徽 合肥 230026上海交通大学IFSA协同创新中心, 上海 200240

联系人作者:袁鹏(yuanpeng@ustc.edu.cn)

备注:国家重大科研装备研制项目、国家重点研发计划;

【1】Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the national ignition facility [J]. Physics of Plasmas. 2004, 11(2): 339-491.Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the national ignition facility [J]. Physics of Plasmas. 2004, 11(2): 339-491.

【2】Dimits A M, Bateman G, Beer M, et al. Comparisons and physics basis of tokamak transport models and turbulence simulations [J]. Physics of Plasmas. 2000, 7(3): 969-983.

【3】Glenzer S H, Alley W E, Estabrook K G, et al. Thomson scattering from laser plasmas [J]. Physics of Plasmas. 1999, 6(5): 2117-2128.Glenzer S H, Alley W E, Estabrook K G, et al. Thomson scattering from laser plasmas [J]. Physics of Plasmas. 1999, 6(5): 2117-2128.

【4】Bai B, Zheng J, Liu W, et al. Thomson scattering measurement of gold plasmas produced with 0.351 μm laser light [J]. Physics of Plasmas. 2001, 8(9): 4144-4148.Bai B, Zheng J, Liu W, et al. Thomson scattering measurement of gold plasmas produced with 0.351 μm laser light [J]. Physics of Plasmas. 2001, 8(9): 4144-4148.

【5】Wang Z, Zheng J, Zhao B, et al. Thomson scattering from laser-produced gold plasmas in radiation conversion layer [J]. Physics of Plasmas. 2005, 12(8): 082703.Wang Z, Zheng J, Zhao B, et al. Thomson scattering from laser-produced gold plasmas in radiation conversion layer [J]. Physics of Plasmas. 2005, 12(8): 082703.

【6】Li Z C, Zheng J, Ding Y K, et al. Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype [J]. Chinese Physics B. 2010, 19(12): 125202.Li Z C, Zheng J, Ding Y K, et al. Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype [J]. Chinese Physics B. 2010, 19(12): 125202.

【7】Peacock N J, Robinson D C, Forrest M J, et al. Measurement of the electron temperature by Thomson scattering in tokamak T3 [J]. Nature. 1969, 224(5218): 488-490.Peacock N J, Robinson D C, Forrest M J, et al. Measurement of the electron temperature by Thomson scattering in tokamak T3 [J]. Nature. 1969, 224(5218): 488-490.

【8】Sheffield J, Froula D, Glenzer S H, et al. Plasma scattering of electromagnetic radiation: theory and measurement techniques [M]. 2nd ed. Pittsburgh: Academic press. 2010.

【9】Yamada I, Funaba H, Yasuhara R, et al. 87(11): 11E531 . 2016.

【10】Nilson D G, Hill D N, Evans J, et al. Thomson scattering stray light reduction techniques using a CCD camera [J]. Review of Scientific Instruments. 1997, 68(1): 704-707.Nilson D G, Hill D N, Evans J, et al. Thomson scattering stray light reduction techniques using a CCD camera [J]. Review of Scientific Instruments. 1997, 68(1): 704-707.

【11】Jacobson C M, Borchardt M T, den Hartog D J, et al. 87(11): 11E511 [J]. mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus, MST, . The Review of Scientific Instruments. 2016.

【12】Al R S, Barth C J, et al. High sensitivity imaging Thomson scattering for low temperature plasma [J]. The Review of Scientific Instruments. 2008, 79(1): 013505.Al R S, Barth C J, et al. High sensitivity imaging Thomson scattering for low temperature plasma [J]. The Review of Scientific Instruments. 2008, 79(1): 013505.

【13】Schlossberg D J, Bongard M W, Fonck R J, et al. Progress on Thomson scattering in the Pegasus toroidal experiment [J]. Journal of Instrumentation. 2013, 8(11): C11019.Schlossberg D J, Bongard M W, Fonck R J, et al. Progress on Thomson scattering in the Pegasus toroidal experiment [J]. Journal of Instrumentation. 2013, 8(11): C11019.

【14】Glenzer S H, Redmer R. X-ray Thomson scattering in high energy density plasmas [J]. Reviews of Modern Physics. 2009, 81(4): 1625-1663.Glenzer S H, Redmer R. X-ray Thomson scattering in high energy density plasmas [J]. Reviews of Modern Physics. 2009, 81(4): 1625-1663.

【15】Hutchinson I H. Principles of plasma diagnostics: second edition [J]. Plasma Physics and Controlled Fusion. 2002, 44(12): 2603.Hutchinson I H. Principles of plasma diagnostics: second edition [J]. Plasma Physics and Controlled Fusion. 2002, 44(12): 2603.

【16】Berni L A. Albuquerque B F C. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak [J]. The Review of Scientific Instruments. 2010, 81(12): 123504.

【17】Kunze H J. Plasma diagnostics [M]. //Dinklage A, Klinger T, Marx G, et al. Plasma physics. Lecture notes in physics. Heidelberg: Springer. 2005, 670: 349-373.

【18】Xiao S M, Hu A L, Chen H, et al. Analysis of baffles for stray light reduction in the Thomson scattering diagnostic on EAST [J]. Fusion Engineering and Design. 2016, 105: 33-38.Xiao S M, Hu A L, Chen H, et al. Analysis of baffles for stray light reduction in the Thomson scattering diagnostic on EAST [J]. Fusion Engineering and Design. 2016, 105: 33-38.

【19】Levesque J P, Litzner K D, Mauel M E, et al. A high-power spatial filter for Thomson scattering stray light reduction [J]. The Review of Scientific Instruments. 2011, 82(3): 033501.Levesque J P, Litzner K D, Mauel M E, et al. A high-power spatial filter for Thomson scattering stray light reduction [J]. The Review of Scientific Instruments. 2011, 82(3): 033501.

【20】Xiao S M, Zang Q, Han X F, et al. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST [J]. The Review of Scientific Instruments. 2016, 87(7): 073506.Xiao S M, Zang Q, Han X F, et al. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST [J]. The Review of Scientific Instruments. 2016, 87(7): 073506.

【21】Kumar R, Singh R, Kumar A. Studies on scattering of laser radiation from viewing dump in tokamak Thomson scattering system [J]. Applied Physics B. 2012, 108(2): 325-333.Kumar R, Singh R, Kumar A. Studies on scattering of laser radiation from viewing dump in tokamak Thomson scattering system [J]. Applied Physics B. 2012, 108(2): 325-333.

【22】Liu W, Mao W, Li H, et al. Progress of the Keda Torus experiment Project in China: design and mission [J]. Plasma Physics and Controlled Fusion. 2014, 56(9): 094009.Liu W, Mao W, Li H, et al. Progress of the Keda Torus experiment Project in China: design and mission [J]. Plasma Physics and Controlled Fusion. 2014, 56(9): 094009.

【23】Thomas M E, Blodgett D W, Hahn D V. Analysis and representation of BSDF and BRDF measurements [J]. Proceedings of SPIE. 2003, 5192: 158-167.

【24】Brown A M, Hahn D V, Thomas M E, et al. Optical material characterization through BSDF measurement and analysis [J]. Proceedings of SPIE. 2010, 7792: 779211.Brown A M, Hahn D V, Thomas M E, et al. Optical material characterization through BSDF measurement and analysis [J]. Proceedings of SPIE. 2010, 7792: 779211.

【25】von Finck A, Trost M, Schr?der S, et al. Parallelized multichannel BSDF measurements [J]. Optics Express. 2015, 23(26): 33493-33505.

【26】Schaaf C B, Gao F, Strahler A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS [J]. Remote Sensing of Environment. 2002, 83(1/2): 135-148.

【27】Lucht W, Schaaf C B, Strahler A H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models [J]. IEEE Transactions on Geoscience and Remote Sensing. 2000, 38(2): 977-998.

【28】Shi W C, Zheng J M, Li Y, et al. Measurement and modeling of bidirectional reflectance distribution function on cutting surface [J]. Acta Optica Sinica. 2018, 38(10): 1029001.
史卫朝, 郑建明, 李言, 等. 加工表面双向反射分布函数的测量与建模 [J]. 光学学报. 2018, 38(10): 1029001.

【29】Schr?der S, Herffurth T, Blaschke H, et al. Angle-resolved scattering: an effective method for characterizing thin-film coatings [J]. Applied Optics. 2011, 50(9): C164-C171.

引用该论文

Wang Peng,Yuan Peng,Tan Weiqiang,Zheng Jian. Measurement of Surface Scattering Characteristics of Black Materials in Thomson Scattering System[J]. Acta Optica Sinica, 2020, 40(21): 2129002

王鹏,袁鹏,谭伟强,郑坚. 汤姆孙散射系统中发黑材料的表面散射特性测量[J]. 光学学报, 2020, 40(21): 2129002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF