中国激光, 2021, 48 (1): 0110001, 网络出版: 2021-01-13   

星-地激光雷达联合观测合肥地区的气溶胶垂直分布 下载: 1240次

Joint Observations of Vertical Distribution of Aerosols in Hefei Area by Spaceborne and Ground-Based Lidars
杨昊 1,2,3谢晨波 1,3,*方志远 1,2,3王邦新 1,3邢昆明 1,3曹也 1,2,3
作者单位
1 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
3 先进激光技术安徽省实验室, 安徽 合肥 230037
摘要
通过匹配星载CALIOP过境合肥时间,筛选Aerosol-lidar的观测数据,选取4个典型天气个例[沙尘天气、多云天气、中度污染(无云)、中度污染(有云)],对合肥地区的气溶胶进行联合观测,并对气溶胶的类型、气溶胶的变化、气溶胶污染的成因及来源进行分析。结果表明,多云天气下,星载激光雷达对底层气溶胶探测时会受到天气的影响,而地基激光雷达的探测效果较佳,可以通过定点连续观测距离的校正信号准确地反映气溶胶含量和变化特点。星-地激光雷达的联合观测可以更好地分析多种复杂天气的气溶胶变化。联合观测结果表明:轻度污染的沙尘型和受污染的浮尘型气溶胶主要集中在0.8~1.6km高度范围内,退偏振比集中在0.18~0.20之间;多云天气的气溶胶主要为污染大陆型,集中在0.4~1.2km高度范围内,其退偏振比在0.015~0.020之间,气溶胶含量很少且为具有球形粒子属性的细颗粒物;中度污染(无云)天气的气溶胶同时包含污染浮尘型和污染大陆型,主要集中在0.3~1.3km高度范围内,退偏振比在0.08以下,具有明显的球形粒子属性;中度污染(有云)天气的气溶胶也同时包含污染浮尘型和污染大陆型,主要集中在0.8~1.4km高度范围内,退偏振比在0.075~0.100范围内,为粒径较小的球形粒子。
Abstract

Objective As aerosols easily spread biological organisms (such as viruses and germs) and exert an extinction effect, they pose serious threats to public health and travel. In addition, with the rapid development of China's economy, intensive industrial carbon emissions and automobile exhaust caused the increase of the amounts of man-made aerosols in many areas of China. Therefore, monitoring these aerosols by remote sensing is necessitated. Joint observations by space-borne and ground-based lidars can capture the temporal and spatial changes in aerosol emissions. The comparative studies under various weather conditions were rarely reported. The differences among the different weather conditions are still unclear. In this paper, we filtered the observation Aerosol-lidar data by matching the time at which the spaceborne CALIOP transits through Hefei under four typical weather conditions: dusty, cloudy, moderately polluted without clouds, and moderately polluted with clouds. We conducted joint aerosol observations in Hefei, and analyzed the types of aerosols, their changes, and the causes and sources of aerosol pollution.

Methods We compared the vertical distributions and profiles of the aerosols in the observation data of Aerosol-lidar and CALIOP. Using the PM2.5and PM10 concentration data at the ground stations, we also determined the changes, vertical distributions, and causes of aerosols. The horizontal aerosol distributions were determined from the remote-sensing true-color images of MODIS. The causes of aerosol changes were deduced from the wind speeds and directions near the ground. Finally, the backward trajectories in the four study cases were analyzed in HYPSLIT mode. The lidar equation by the traditional Fernald algorithm was used in this article.

Results and Discussions According to the joint observations, the polluted dust aerosol in dusty (lightly polluted) weather was concentrated in the 0.8- to 1.6-km height range, and the dust type were dust and polluted dust. The depolarization ratio was concentrated in the 0.18--0.20 range. In cloudy weather, the main dust type was polluted continental type concentrated in the 0.4- to 1.2-km height range, with depolarization ratios between 0.015 and 0.020. The aerosol content was very small and the particles were fine and spherical. In moderately polluted cloudless weather, polluted dust coexisted with polluted continental-type aerosols. The particles were concentrated in the 0.3- to 1.3-km height range, and the depolarization ratio was below 0.080, indicating an obvious spherical attribute. In moderately polluted cloudy weather, polluted dust coexisted with polluted continental-type aerosols again, but the main height range was 0.8--1.4km, and the depolarization ratio ranged from 0.075 to 0.100, indicating small-sized spherical particles. Small aerosols showed the properties of spherical particles with low depolarization ratios. The joint observations of space-borne and ground-based lidar more accurately captured and characterized the aerosol distributions at different time and from different locations than single observations. Although the ground-based lidar results were more accurate, the space-borne lidar provided better resolution for observing the spatial changes of aerosols. NOAA provided the HYSPLIT backward trajectory model for analyzing the sources and transport paths of the aerosols in the four weather cases. The HYSPLIT results confirmed different sources of the aerosols, to determine different conditions of aerosol formation by combining with the wind speeds and directions.

Conclusions Cloudy weather conditions affected the detection of the bottom aerosols by the space-borne lidar. To better obtain the aerosol content and the characteristics of its change, the range-corrected signal was continuously observed at fixed point by the ground-based lidar. The aerosol changes largely differed under different weather conditions, and the types, causes and sources of aerosols were also highly variable. When the stratification of the atmosphere is stable, aerosols tend to accumulate locally and cannot diffuse; in contrast, when the atmospheric fluidity is strong, a small amount of pollutant dust mixes with the local aerosols and the weather becomes hazy, resulting from the change and transmission of aerosols. The combination of various data, such as lidar observations and ground particle-concentration data, wind speed, and wind direction, can explain the changes and causes of aerosols. In future work, we should combine these data into comprehensive observations of weather changes, and thereby build a model for monitoring urban aerosol pollution.

杨昊, 谢晨波, 方志远, 王邦新, 邢昆明, 曹也. 星-地激光雷达联合观测合肥地区的气溶胶垂直分布[J]. 中国激光, 2021, 48(1): 0110001. Hao Yang, Chenbo Xie, Zhiyuan Fang, Bangxin Wang, Kunming Xing, Ye Cao. Joint Observations of Vertical Distribution of Aerosols in Hefei Area by Spaceborne and Ground-Based Lidars[J]. Chinese Journal of Lasers, 2021, 48(1): 0110001.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!