Photonics Research, 2019, 7 (11): 11001296, Published Online: Oct. 30, 2019  

Interference-enhanced optical magnetism in surface high-index resonators: a pathway toward high-performance ultracompact linear and nonlinear meta-optics

Author Affiliations
1 Department of Electrical Engineering and Center for Nanoscale Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
2 e-mail: lzk12@psu.edu
3 e-mail: dhw@psu.edu
Abstract
Artificial magnetism in optical frequencies is one of the most intriguing phenomena associated with metamaterials. The Mie resonance of high-index resonators provides an alternative approach to achieving optical magnetism with simple structures. Given the generally moderate refractive index exhibited by available materials at optical frequencies, Mie resonances usually suffer from coupling between the multipole modes, and the corresponding response of the Mie metasurfaces can be analyzed based on the concept of “meta-optics.” Here, we show that the optical magnetism in high-index resonators can be significantly enhanced by adding a highly reflective back mirror to the system. To highlight the transformative ability of this approach for improving meta-optics in the linear and nonlinear regimes, two proof-of-concept demonstrations are presented. Theoretical modeling reveals that low-pump power ultrafast nonlinear optics can be realized in periodic Si nanodisk arrays backed with a gold film, a system supporting guided resonance modes. Moreover, based on the enhanced magnetism of individual high-index resonators, a pair of silicon cuboids is demonstrated as a magnetic antenna for directional excitation of surface plasmon waves. The interference-enhanced magnetism of high-index resonators provides a disruptive technology for enabling meta-optics comprising ultracompact, high-speed, and power-efficient photonic devices.

Lei Kang, Huaguang Bao, Douglas H. Werner. Interference-enhanced optical magnetism in surface high-index resonators: a pathway toward high-performance ultracompact linear and nonlinear meta-optics[J]. Photonics Research, 2019, 7(11): 11001296.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!