首页 > 论文 > 激光与光电子学进展 > 57卷 > 12期(pp:120001--1)

自适应光学在荧光显微镜中的应用 (封面文章) (特邀综述)

Application of Adaptive Optics in Fluorescence Microscope (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

荧光显微镜因具有对样品损伤小、可进行特异性标记、适用于活体成像等优点,一直是生物医学研究中的主要手段。但光学系统自身缺陷、生物样品光学性质的不均匀性以及样品与显微镜浸润介质界面折射率的变化等导致了像差的产生,降低了成像的对比度和分辨率。自适应光学(AO)技术通过使用主动光学元件,如可变形镜、空间光调制器等,对畸变的波前(像差)进行校正,消除动态波前误差,恢复衍射受限性能。近年来,众多学者将AO系统与荧光显微镜相结合,以修正由样品不均匀性引起的像差,进而改善成像质量。介绍了AO技术的基本原理,综述了近年来AO技术在荧光显微镜成像中的应用,并对其未来发展趋势进行了展望。

Abstract

Fluorescence microscope has always been the main method in biomedical researches due to its advantages such as less damage to samples, specific labeling, and being suitable for in vivo imaging. However, the defects of optical system itself, the optical inhomogeneity of biological samples, and the change in the refractive index at the interface between the sample and the microscope''s immersion medium have caused aberrations and reduced the imaging contrast and imaging resolution. Adaptive optics (AO) technology uses active optical components such as deformable mirrors and spatial light modulators to correct distorted wavefronts (aberrations), eliminate dynamic wavefront errors, and restore diffraction-limited performance. In recent years, many researchers have combined AO system with fluorescence microscope to correct the aberration caused by sample inhomogeneity and improve the imaging quality. In this paper, the basic principle of the AO technology is introduced, the applications of AO technology in fluorescence microscopic imaging in recent years are reviewed, and its future development trend is prospected.

中国激光微信矩阵
补充资料

中图分类号:O436

DOI:10.3788/LOP57.120001

所属栏目:综述

基金项目:国家自然科学基金、高等学校学科创新引智计划、低维量子物理国家重点实验室开放基金、瞬态光学与光子技术国家重点实验室开放基金;

收稿日期:2019-12-25

修改稿日期:2020-01-10

网络出版日期:2020-06-01

作者单位    点击查看

刘立新:西安电子科技大学物理与光电工程学院, 陕西 西安 710071中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
张美玲:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
吴兆青:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
杨乾乾:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
郜鹏:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
薛平:清华大学物理系低维量子物理国家重点实验室, 北京 100084

联系人作者:刘立新(lxliu@xidian.edu.cn)

备注:国家自然科学基金、高等学校学科创新引智计划、低维量子物理国家重点实验室开放基金、瞬态光学与光子技术国家重点实验室开放基金;

【1】Babcock H W. The possibility of compensating astronomical seeing [J]. Publications of the Astronomical Society of the Pacific. 1953, 65(386): 229-236.

【2】Merkle F, Gerard R, Kern P Y, et al. First diffraction-limited astronomical images with adaptive optics [J]. Proceedings of SPIE. 1990, 1236: 193-203.

【3】Wei K, Li M, Chen S Q, et al. First light for the sodium laser guide star adaptive optics system on the Lijiang 1.8 m telescope [J]. Research in Astronomy and Astrophysics. 2016, 16(12): 183.

【4】Salmon J T, Bliss E S, Byrd J L, et al. An adaptive optics system for solid-state laser systems used in inertial confinement fusion . [C]∥1st Annual International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, May 30-June 2, 1995, Monterey, CA, United States. 1995.

【5】Wang Q, Kocaoglu O P, Cense B, et al. Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics [J]. Investigative Ophthalmology and Visual Science. 2011, 52(9): 6292-6299.

【6】Schallek J, Geng Y, Nguyen H, et al. Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization [J]. Investigative Ophthalmology and Visual Science. 2013, 54(13): 8237-8250.Schallek J, Geng Y, Nguyen H, et al. Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization [J]. Investigative Ophthalmology and Visual Science. 2013, 54(13): 8237-8250.

【7】Kitaguchi Y, Fujikado T, Bessho K, et al. Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea [J]. Ophthalmology. 2008, 115(10): 1771-1777.

【8】Ooto S, Hangai M, Sakamoto A, et al. High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy [J]. Ophthalmology. 2010, 117(9): 1800-1809.

【9】Herman B. Fluorescence microscopy [M]. New York: Springer. 1998.

【10】Booth M J. Adaptive optics inmicroscopy [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007, 365(1861): 2829-2843.

【11】Albert O, Sherman L, Mourou G, et al. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy [J]. Optics Letters. 2000, 25(1): 52-54.

【12】Ji N. Adaptive optical fluorescence microscopy [J]. Nature Methods. 2017, 14(4): 374-380.

【13】Zhang C H, Zhao Z W, Chen L Y, et al. Application of adaptive optics in biological fluorescent microscopy [J]. Scientia Sinica Physica,Mechanica & Astronomica. 2017, 47(8): 21-34.
张财华, 赵志伟, 陈良怡, 等. 自适应光学在生物荧光显微成像技术中的应用 [J]. 中国科学(物理学力学天文学). 2017, 47(8): 21-34.

【14】Cha J W, Ballesta J. So P T C. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy [J]. Journal of Biomedical Optics. 2010, 15(4): 046022.

【15】Bourgenot C, Saunter C D, Taylor J M, et al. 3D adaptive optics in a light sheet microscope [J]. Optics Express. 2012, 20(12): 13252-13261.

【16】Tang J, Germain R N, Cui M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique [J]. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109(22): 8434-8439.

【17】Legras R, Gaudric A, Woog K. Distribution of cone density, spacing and arrangement in adult healthy retinas with adaptive optics flood illumination [J]. PLoS One. 2018, 13(1): e0191141.Legras R, Gaudric A, Woog K. Distribution of cone density, spacing and arrangement in adult healthy retinas with adaptive optics flood illumination [J]. PLoS One. 2018, 13(1): e0191141.

【18】Wu Y K. The therapeutic application of adaptive optics in amblyopia treatment [D]. Luzhou: Southwest Medical University. 2013, 6-22.
吴榆可. 自适应光学视力治疗仪在弱视治疗中的应用 [D]. 泸州: 西南医科大学. 2013, 6-22.

【19】Wang Z B. The application of adaptive optical fluorescence closed-loop technology in confocal imaging [D]. Beijing: University of Chinese Academy of Sciences. 2015, 15-25.
王志斌. 自适应光学荧光闭环技术在共聚焦成像中的应用 [D]. 北京: 中国科学院大学. 2015, 15-25.

【20】Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing [J]. Journal of Refractive Surgery. 2001, 17(5): S573-S577.

【21】Bon P, Maucort G, Wattellier B, et al. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells [J]. Optics Express. 2009, 17(15): 13080-13094.

【22】Costa J B. Modulation effect of the atmosphere in a pyramid wave-front sensor [J]. Applied Optics. 2005, 44(1): 60-66.Costa J B. Modulation effect of the atmosphere in a pyramid wave-front sensor [J]. Applied Optics. 2005, 44(1): 60-66.

【23】Azucena O, Crest J, Kotadia S, et al. Adaptive optics wide-field microscopy using direct wavefront sensing [J]. Optics Letters. 2011, 36(6): 825-827.Azucena O, Crest J, Kotadia S, et al. Adaptive optics wide-field microscopy using direct wavefront sensing [J]. Optics Letters. 2011, 36(6): 825-827.

【24】Bourgenot C, Saunter C D, Love G D, et al. Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy [J]. Journal of the European Optical Society: Rapid Publications. 2013, 8: 13027.

【25】Kner P, Winoto L, David A, et al. Closed loop adaptive optics for microscopy without a wavefront sensor [J]. Proceedings of SPIE. 2010, 7570: 757006.

【26】Li J, Beaulieu D R, Paudel H, et al. Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor [J]. Optica. 2015, 2(8): 682-688.

【27】Li J, Bifano T G, Mertz J. Widefield fluorescence microscopy with sensor-based conjugate adaptive optics using oblique back illumination [J]. Journal of Biomedical Optics. 2016, 21(12): 121504.

【28】Zhao Q, Shi X, Gong W, et al. Large field-of-view and deep tissue optical micro-imaging based on parallel wavefront correction algorithm [J]. Chinese Journal of Lasers. 2018, 45(12): 1207001.
赵琪, 石鑫, 龚薇, 等. 基于并行波前校正算法的大视场深穿透光学显微成像 [J]. 中国激光. 2018, 45(12): 1207001.

【29】Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy. 2000, 198: 82-87.

【30】Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination [J]. Biophysical Journal. 2008, 94(12): 4957-4970.

【31】Débarre D, Botcherby E J, Booth M J, et al. Adaptive optics for structured illumination microscopy [J]. Optics Express. 2008, 16(13): 9290-9305.

【32】Thomas B, Wolstenholme A, Chaudhari S N, et al. Enhanced resolution through thick tissue with structured illumination and adaptive optics [J]. Journal of Biomedical Optics. 2015, 20(2): 026006.

【33】Li Q, Reinig M, Kamiyama D, et al. Woofer-tweeter adaptive optical structured illumination microscopy [J]. Photonics Research. 2017, 5(4): 329-334.

【34】Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science. 2006, 313(5793): 1642-1645.

【35】Izeddin I, El Beheiry M, Andilla J, et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking [J]. Optics Express. 2012, 20(5): 4957-4967.

【36】Burke D, Kenny F, Patton B, et al. Optimal sensorless adaptive optics schemes for super-resolution microscopy . [C]∥Imaging and Applied Optics, June 23-27, 2013, Arlington, Virginia. Washington, D.C.: OSA. 2013, pOTu1A: 2.

【37】Burke D, Patton B, Huang F, et al. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy [J]. Optica. 2015, 2(2): 177-185.

【38】Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods. 2006, 3(10): 793-796.

【39】Tehrani K F, Xu J Q, Zhang Y W, et al. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm [J]. Optics Express. 2015, 23(10): 13677-13692.

【40】Tehrani K F, Zhang Y W, Shen P, et al. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization [J]. Biomedical Optics Express. 2017, 8(11): 5087-5097.

【41】Pawley J B. Handbook of biological confocal microscopy [M]. 3rd ed. Berlin: Springer. 2006.

【42】Tao X D, Fernandez B, Azucena O, et al. Adaptive optics confocal microscopy using direct wavefront sensing [J]. Optics Letters. 2011, 36(7): 1062-1064.

【43】Tao X D, Azucena O, Fu M, et al. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars [J]. Optics Letters. 2011, 36(17): 3389-3391.

【44】Tao X D, Crest J, Kotadia S, et al. Live imaging using adaptive optics with fluorescent protein guide-stars [J]. Optics Express. 2012, 20(14): 15969-15982.

【45】Tao X D, Dean Z, Chien C, et al. Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars [J]. Optics Express. 2013, 21(25): 31282-31292.

【46】Wang Z B, Wei D, Wei L, et al. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope [J]. Journal of Biomedical Optics. 2014, 19(8): 086009.Wang Z B, Wei D, Wei L, et al. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope [J]. Journal of Biomedical Optics. 2014, 19(8): 086009.

【47】Hu D T, Shen W, Ma W C, et al. Fast convergence stochastic parallel gradient descent algorithm [J]. Laser & Optoelectronics Progress. 2019, 56(12): 122201.
胡栋挺, 申文, 马文超, 等. 一种快速收敛的随机并行梯度下降算法 [J]. 激光与光电子学进展. 2019, 56(12): 122201.

【48】Wen L H, Huang Q Y, Xu X Q. Optimizing correction algorithm for adaptive optics based on square of wavefront gradient [J]. Laser & Optoelectronics Progress. 2019, 56(24): 240103.
文良华, 黄琴英, 徐勋前. 基于波前梯度平方的自适应光学优化校正算法 [J]. 激光与光电子学进展. 2019, 56(24): 240103.

【49】Pozzi P, Wilding D, Soloviev O, et al. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy [J]. Optics Express. 2017, 25(2): 949-959.

【50】Pozzi P, Soloviev O, Wilding D, et al. Optimal model-based sensorless adaptive optics for epifluorescence microscopy [J]. PLoS One. 2018, 13(3): e0194523.

【51】Liu C G, Kim M K. Digital adaptive optics line-scanning confocal imaging system [J]. Journal of Biomedical Optics. 2015, 20(11): 111203.

【52】Liu C G, Thapa D, Yao X C. Digital adaptive optics confocal microscopy based on iterative retrieval of optical aberration from a guidestar hologram [J]. Optics Express. 2017, 25(7): 8223-8236.

【53】Zheng J J, Gao P, Shao X P. Aberration compensation and resolution improvement of focus modulation microscopy [J]. Journal of Optics. 2017, 19(1): 015302.

【54】Wang C, Ji N. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy [J]. Optics Letters. 2012, 37(11): 2001-2003.

【55】Wang C, Liu R, Milkie D E, et al. Multiplexed aberration measurement for deep tissue imaging in vivo [J]. Nature Methods. 2014, 11(10): 1037-1040.Wang C, Liu R, Milkie D E, et al. Multiplexed aberration measurement for deep tissue imaging in vivo [J]. Nature Methods. 2014, 11(10): 1037-1040.

【56】Zhang C H, Sun W Q, Mu Q Q, et al. Analysis of aberrations and performance evaluation of adaptive optics in two-photon light-sheet microscopy [J]. Optics Communications. 2019, 435: 46-53.

【57】Tao X D, Norton A, Kissel M, et al. Adaptive optical two-photon microscopy using autofluorescent guide stars [J]. Optics Letters. 2013, 38(23): 5075-5078.

【58】Wang K, Sun W Z, Richie C T, et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue [J]. Nature Communications. 2015, 6: 7276.

【59】Sinefeld D, Paudel H P, Ouzounov D G, et al. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence [J]. Optics Express. 2015, 23(24): 31472-31483.

【60】Bueno J M, Skorsetz M, Bonora S, et al. Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens [J]. Optics Express. 2018, 26(11): 14278-14287.

【61】Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters. 1994, 19(11): 780-782.

【62】Gould T J, Burke D, Bewersdorf J, et al. Adaptive optics enables 3D STED microscopy in aberrating specimens [J]. Optics Express. 2012, 20(19): 20998-21009.

【63】Patton B R, Burke D, Owald D, et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics [J]. Optics Express. 2016, 24(8): 8862-8876.

【64】Zdańkowski P, Trusiak M, Cywińska M, et al. An adaptive optics 3D STED microscope for super-resolution imaging of thick samples with background noise suppression using digital image processing [J]. Proceedings of SPIE. 2018, 10834: 108342G.

【65】Gao P, Nienhaus G U. Precise background subtraction in stimulated emission double depletion nanoscopy [J]. Optics Letters. 2017, 42(4): 831-834.

【66】Gao P, Prunsche B, Zhou L, et al. Background suppression in fluorescence nanoscopy with stimulated emission double depletion [J]. Nature Photonics. 2017, 11(3): 163-169.

引用该论文

Liu Lixin,Zhang Meiling,Wu Zhaoqing,Yang Qianqian,Gao Peng,Xue Ping. Application of Adaptive Optics in Fluorescence Microscope[J]. Laser & Optoelectronics Progress, 2020, 57(12): 120001

刘立新,张美玲,吴兆青,杨乾乾,郜鹏,薛平. 自适应光学在荧光显微镜中的应用[J]. 激光与光电子学进展, 2020, 57(12): 120001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF