首页 > 论文 > 中国激光 > 46卷 > 8期(pp:806006--1)

基于光热效应的单光纤捕获方法与仿真分析

Photothermal Effect Based Single Fiber Trapping Method and Simulation Analysis

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对光纤光镊捕获颗粒时直接接触易产生机械损伤的问题,提出了一种基于光热效应的单光纤远距离捕获方法。采用功率低于20 mW的C波段光纤宽带放大自发辐射光源,实现了对中尺度二氧化硅(SiO2)小球的远距离捕获和操控,捕获距离长达800 μm。为探明该捕获机理,采用COMSOL Multiphysics有限元分析软件,仿真模拟了光纤在SiO2悬浮液不同高度位置处形成的温度场分布、对流速度场分布和粒子在溶液中的运动轨迹。研究发现,在光纤操控小球的过程中起主要作用的是热对流产生的曳力,同时调整光纤高度会改变捕获速度和捕获距离。这种光纤微流体装置结构简单、操作灵活,具备在低功率条件下大范围捕获大颗粒的条件。

Abstract

To solve the mechanical damage caused by direct contact when the fiber optic tweezers captures particles, a single fiber long-distance capture method based on photothermal effect is proposed. Mesoscale silica spheres can be moved and trapped freely within 800 μm by utilizing a C-band fiber broadband amplified spontaneous emission source with a power of less than 20 mW. To find out the capture mechanism, COMSOL Multiphysics finite element analysis software is used to simulate the temperature field distribution, convective velocity field distribution, and particle motion trajectories when the fiber is at different heights in the silica suspension. It is shown that the drag force generated by the heat convection plays a crucial role in the process of the manipulation of microparticles, while the capture speed and capture distance can be changed by adjusting the fiber height. The optical fiber microfluidic device has the advantages of simple structure and flexible operation, and can realize large-scale capture of large particles by using low-power lasers.

广告组6 - 调制器
补充资料

中图分类号:Q632

DOI:10.3788/CJL201946.0806006

所属栏目:光纤光学与光通信

基金项目:华中科技大学2016人才引进基金;

收稿日期:2019-03-11

修改稿日期:2019-04-19

网络出版日期:2019-08-01

作者单位    点击查看

杨敏君:华中科技大学材料科学与工程学院, 湖北 武汉 430074
湛位:华中科技大学材料科学与工程学院, 湖北 武汉 430074
宋五洲:华中科技大学材料科学与工程学院, 湖北 武汉 430074

联系人作者:杨敏君(wsong@hust.edu.cn); 湛位(wsong@hust.edu.cn); 宋五洲(wsong@hust.edu.cn);

备注:华中科技大学2016人才引进基金;

【1】Bernardoni P, Riwan A, Tsitsiris H et al. From the mechanical analysis of a polyarticulated microgripper to the design of a compliant microgripper. Proceedings of SPIE. 5383, 469-477(2004).

【2】Haliyo D S, Dionnet F and Regnier S. Controlled rolling of microobjects for autonomous manipulation. Journal of Micromechatronics. 3(2), 75-101(2006).

【3】Kawamoto H and Tsuji K. Manipulation of small particles utilizing electrostatic force. Advanced Powder Technology. 22(5), 602-607(2011).

【4】Gosse C and Croquette V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophysical Journal. 82(6), 3314-3329(2002).

【5】Squires T M and Quake S R. Microfluidics: fluid physics at the nanoliter scale. Reviews of Modern Physics. 77(3), 977-1026(2005).

【6】Chiou P Y, Ohta A T and Wu M C. Massively parallel manipulation of single cells and microparticles using optical images. Nature. 436(7049), 370-372(2005).

【7】Zhang X Y, Cheng S B and Tao S H. Three-dimensional optical tweezers based on Fibonacci zone plate. Acta Optica Sinica. 37(10), (2017).
张心宇, 程书博, 陶少华. 基于斐波那契波带片的三维光镊. 光学学报. 37(10), (2017).

【8】Constable A, Kim J, Mervis J et al. Demonstration of a fiber-optical light-force trap. Optics Letters. 18(21), 1867-1869(1993).

【9】Li Y M, Gong L, Li D et al. Progress in optical tweezers technology. Chinese Journal of Lasers. 42(1), (2015).
李银妹, 龚雷, 李迪 等. 光镊技术的研究现况. 中国激光. 42(1), (2015).

【10】Jensen-Mcmullin C, Lee H P and Lyons E R. Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap. Optics Express. 13(7), 2634-2642(2005).

【11】Taguchi K, Ueno H, Hiramatsu T et al. Optical trapping of dielectric particle and biological cell using optical fibre. Electronics Letters. 33(5), 413-414(1997).

【12】Liang P B. Research on mode multiplexing single fiber optical tweezers with its application. Harbin: Harbin Engineering University. (2015).
梁佩博. 复用型单光纤光镊技术及应用研究. 哈尔滨: 哈尔滨工程大学. (2015).

【13】Wu Z F, Liu Z H, Guo C K et al. Numerical simulation and experiments of two fiber optical tweezers. Acta Optica Sinica. 28(10), 1971-1976(2008).
吴忠福, 刘志海, 郭成凯 等. 两种单光纤光镊捕获效果的数值仿真与实验研究. 光学学报. 28(10), 1971-1976(2008).

【14】Liu Z H, Guo C K, Wu Z F et al. Numerical analysis and experiment of single fiber optic tweezers used in cell manipulation. Acta Photonica Sinica. 38(4), 900-904(2009).
刘志海, 郭成凯, 吴忠福 等. 一种用于细胞操作的单光纤光镊研究. 光子学报. 38(4), 900-904(2009).

【15】Berthelot J, Acimovic S S, Juan M L et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology. 9(4), 295-299(2014).

【16】Chen J J, Kang Z W, Kong S K et al. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Optics Letters. 40(17), 3926-3929(2015).

【17】Zheng J P, Xing X B, Evans J et al. Optofluidic vortex arrays generated by graphene oxide for tweezers, motors and self-assembly. NPG Asia Materials. 8(4), (2016).

【18】Cheng Y P, Yang J X, Li Z B et al. Microbubble-assisted optofluidic control using a photothermal waveguide. Applied Physics Letters. 111(15), (2017).

【19】Zhang C L, Gong Y, Wu Y et al. Lab-on-tip based on photothermal microbubble generation for concentration detection. Sensors and Actuators B: Chemical. 255, 2504-2509(2018).

【20】Gelfand R M, Wheaton S and Gordon R. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Optics Letters. 39(22), 6415-6417(2014).

【21】Tan W H and Takeuchi S. A trap-and-release integrated microfluidic system for dynamic microarray applications. Proceedings of the National Academy of Sciences. 104(4), 1146-1151(2007).

【22】Ohta A T, Jamshidi A, Valley J K et al. Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate. Applied Physics Letters. 91(7), (2007).

【23】Flores-Flores E. Torres-Hurtado S A, Páez R, et al. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis. Biomedical Optics Express. 6(10), 4079-4087(2015).

【24】Li Z B, Yang J X, Liu S J et al. High throughput trapping and arrangement of biological cells using self-assembled optical tweezer. Optics Express. 26(26), 34665-34674(2018).

【25】Wienken C J, Baaske P, Rothbauer U et al. Protein-binding assays in biological liquids using microscale thermophoresis. Nature Communications. 1(7), (2010).

【26】Deng R R, He Y Q, Qin Y et al. Measuring pure water absorption coefficient in the near-infrared spectrum (900~2500 nm). Journal of Remote Sensing. 16(1), 192-206(2012).
邓孺孺, 何颖清, 秦雁 等. 近红外波段(900-2500 nm)水吸收系数测量. 遥感学报. 16(1), 192-206(2012).

【27】Doering C R and Gibbon J D. Applied analysis of the Navier-Stokes equations: turbulence. 40-60(1995).

【28】Guo Z H, Liu Z T, Chen Q M et al. Application and progress of laser shaping devices in optical tweezers. Laser & Optoelectronics Progress. 54(9), (2017).
郭志和, 刘泽田, 陈启敏 等. 激光整形器件在光镊中的应用及进展. 激光与光电子学进展. 54(9), (2017).

【29】Jing M J. Simulation of focus evanescent field based on FDTD and experimental design. Qinhuangdao: Yanshan University. (2010).
荆敏娟. 单光纤光镊的FDTD模拟分析及实验设计. 秦皇岛: 燕山大学. (2010).

引用该论文

Yang Minjun,Zhan Wei,Song Wuzhou. Photothermal Effect Based Single Fiber Trapping Method and Simulation Analysis[J]. Chinese Journal of Lasers, 2019, 46(8): 0806006

杨敏君,湛位,宋五洲. 基于光热效应的单光纤捕获方法与仿真分析[J]. 中国激光, 2019, 46(8): 0806006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF