首页 > 论文 > 中国激光 > 47卷 > 1期(pp:111002--1)

基于光声光谱技术的CO气体探测

Carbon Monoxide Detection Based on Photoacoustic Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

搭建了基于2.3 μm中红外可调谐二极管激光器的CO气体的光声光谱测量系统,并选取4300.699 cm -1处的CO吸收谱线作为传感目标。为了消除较长的CO分子弛豫时间对测量的影响,采用在实验气体中混入水汽的方式来增强光声信号。通过优化调制参数确定出系统的最佳调制振幅和调制频率分别为4.29 cm -1和785 Hz。在最优的实验条件下,所选谱线的二次谐波信号与CO浓度间具有良好的线性关系,其线性度为0.994,利用该关系反演出空气中CO的体积分数约为2.13×10 -6。最后利用Allan方差对干湿条件系统的长期稳定性进行了分析,得到系统在干湿条件下的探测极限分别为1.18×10 -7和0.58×10 -7,验证了水汽的加入可以有效提高系统对CO的探测灵敏度。

Abstract

A carbon monoxide (CO) measurement system based on photoacoustic spectroscopy with a 2.3 μm mid-infrared tunable diode laser is built. The CO absorption line at 4300.699 cm -1 is selected as the sensing object. In order to eliminate the influence of long relaxation time of CO molecule on measurement, water vapor is added into experimental gas to enhance CO photoacoustic signal. By optimizing the modulation parameters, the optimal modulation amplitude and modulation frequency of the system are determined to be 4.29 cm -1 and 785 Hz,respectively. Under the optimal experimental conditions, there is a good linear relationship between the second harmonic signal of the selected spectral line and the CO concentration, and the linearity is 0.994. The 2.13×10 -6 volume fraction of CO in the air can be retrieved from the relationship. Finally, by using the Allan variance to analyze the long-term stability of the system under dry and wet conditions, the detection limits under dry and wet conditions are 1.18×10 -7 and 0.58×10 -7, respectively. It is proved that the addition of water vapor can effectively improve the CO detection sensitivity of the system.

中国激光微信矩阵
补充资料

中图分类号:O433.1

DOI:10.3788/CJL202047.0111002

所属栏目:光谱学

基金项目:国家自然科学基金、徐州市推动科技创新项目、江苏省研究生科研与实践创新计划;

收稿日期:2019-07-22

修改稿日期:2019-09-26

网络出版日期:2020-01-01

作者单位    点击查看

刘新:江苏师范大学物理与电子工程学院江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
张婷:江苏师范大学物理与电子工程学院江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
张刚:江苏师范大学物理与电子工程学院江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
高光珍:江苏师范大学物理与电子工程学院江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
蔡廷栋:江苏师范大学物理与电子工程学院江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116

联系人作者:蔡廷栋(caitingdong@126.com)

备注:国家自然科学基金、徐州市推动科技创新项目、江苏省研究生科研与实践创新计划;

【1】Prockop L D, Chichkova R I. Carbon monoxide intoxication: an updated review [J]. Journal of the Neurological Sciences. 2007, 262(1/2): 122-130.

【2】Logan J A, Prather M J, Wofsy S C, et al. Tropospheric chemistry: a global perspective [J]. Journal of Geophysical Research. 1981, 86(C8): 7210-7254.

【3】Peng Y Q, Kan R F, Xu Z Y, et al. Measurement of CO concentration in combustion field based on mid-infrared absorption spectroscopy [J]. Chinese Journal of Lasers. 2018, 45(9): 0911010.
彭于权, 阚瑞峰, 许振宇, 等. 基于中红外吸收光谱技术的燃烧场CO浓度测量研究 [J]. 中国激光. 2018, 45(9): 0911010.

【4】Smith R N, Swinehart J, Lesnini D G. Chromatographic analysis of gas mixtures containing nitrogen, nitrous oxide, nitric oxide, carbon monoxide, and carbon dioxide [J]. Analytical Chemistry. 1958, 30(7): 1217-1218.

【5】Ary S, Dockter K, Nielsen A, et al. United states environmental protection agency [J]. Proceedings of the Water Environment Federation. 2005, 2005(16): 726-737.

【6】Yang J C, Zhou J X, Lü Z, et al. A real-time monitoring system of industry carbon monoxide based on wireless sensor networks [J]. Sensors. 2015, 15(11): 29535-29546.

【7】Hodgkinson J, Smith R, Ho W O, et al. Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor [J]. Sensors and Actuators B: Chemical. 2013, 186: 580-588.

【8】Peng X J. Study on photoacoustic spectroscopy detection and response characteristic of carbon monoxide [D]. Chongqing: Chongqing University. 2013, 1-18.
彭晓娟. 一氧化碳气体的光声光谱检测及其响应特性研究 [D]. 重庆: 重庆大学. 2013, 1-18.

【9】Schramm D U. Sthel M S, da Silva M G, et al. Application of laser photoacoustic spectroscopy for the analysis of gas samples emitted by diesel engines [J]. Infrared Physics & Technology. 2003, 44(4): 263-269.

【10】Sigrist M W, Winefordner J D, Kolthoff I M. Air monitoring by spectroscopic techniques [M]. New York: John Wiley & Sons, Inc. 1994, 25-28.

【11】He Y, Ma Y F, Tong Y, et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell [J]. Optics Letters. 2019, 44(8): 1904-1907.

【12】Dong L, Ma W G, Zhang L, et al. Mid-IR ultra-sensitive CO detection based on pulsed quartz enhanced photoacoustic spectroscopy [J]. Acta Optica Sinica. 2014, 34(1): 0130002.
董磊, 马维光, 张雷, 等. 基于脉冲石英增强光声光谱的中红外超高灵敏CO探测 [J]. 光学学报. 2014, 34(1): 0130002.

【13】Wang Q, Xu K, Yao C Y, et al. Recent advances of power-enhanced photoacoustic spectroscopy for gas sensing [J]. Chinese Journal of Lasers. 2018, 45(9): 0911008.
王强, 许可, 姚晨雨, 等. 功率增强型光声光谱气体传感技术的研究进展 [J]. 中国激光. 2018, 45(9): 0911008.

【14】Bell A G. Upon the production, reproduction of sound by light. Journal of the Society of Telegraph Engineers[J]. 1880, 9(34): 404-426.

【15】Edwards H O, Dakin J P. Gas sensors using correlation spectroscopy compatible with fibre-optic operation [J]. Sensors and Actuators B: Chemical. 1993, 11(1/2/3): 9-19.

【16】Qiao S D, Ma Y F, He Y, et al. A sensitive carbon monoxide sensor based on photoacoustic spectroscopy with a 2.3 μm mid-infrared high-power laser and enhanced gas absorption [J]. Sensors. 2019, 19(14): 3202.

【17】Gyawali M, Arnott W P, Zaveri R A, et al. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols [J]. Atmospheric Chemistry and Physics. 2012, 12(5): 2587-2601.

【18】Narasimhan L R, Goodman W. Patel C K N. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis [J]. Proceedings of the National Academy of Sciences. 2001, 98(8): 4617-4621.

【19】Kerr E L, Atwood J G. The laser illuminated absorptivity spectrophone: a method for measurement of weak absorptivity in gases at laser wavelengths [J]. Applied Optics. 1968, 7(5): 915-921.

【20】Yao L, Liu W Q, Liu J G, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS [J]. Chinese Journal of Lasers. 2015, 42(2): 0215003.
姚路, 刘文清, 刘建国, 等. 基于TDLAS的长光程环境大气痕量CO监测方法研究 [J]. 中国激光. 2015, 42(2): 0215003.

【21】Wu H P, Dong L, Zheng H D, et al. Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser [J]. Sensors and Actuators B: Chemical. 2015, 221: 666-672.

【22】Slowik J G, Cross E S, Han J H, et al. An inter-comparison of instruments measuring black carbon content of soot particles [J]. Aerosol Science and Technology. 2007, 41(3): 295-314.

【23】Bakhirkin Y A, Kosterev A A, Curl R F, et al. Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy [J]. Applied Physics B. 2006, 82(1): 149-154.

【24】Ma Y F, Lewicki R, Razeghi M, et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL [J]. Optics Express. 2013, 21(1): 1008-1019.

【25】Ma Y F, Tong Y, He Y, et al. Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection [J]. Optics Express. 2019, 27(6): 9302-9312.

【26】Wei T T, Wu H P, Yin X K, et al. Impact of humidity and SF6 on CO detection based on quartz-enhanced photoacoustic spectroscopy [J]. Optics and Precision Engineering. 2018, 26(8): 1870-1875.
卫婷婷, 武红鹏, 尹旭坤, 等. 湿度和SF6在石英增强光声光谱中对CO分子弛豫率的影响 [J]. 光学精密工程. 2018, 26(8): 1870-1875.

【27】Chen K, Yuan S, Gong Z F, et al. Ultra-high sensitive photoacoustic spectrometer for trace gas detection based on fiber-optic acoustic sensors [J]. Acta Optica Sinica. 2018, 38(3): 0328015.
陈珂, 袁帅, 宫振峰, 等. 基于光纤声波传感的超高灵敏度光声光谱微量气体检测 [J]. 光学学报. 2018, 38(3): 0328015.

【28】Chen Y, Gao G Z, Cai T D. Detection technique of ethylene based on photoacoustic spectroscopy [J]. Chinese Journal of Lasers. 2017, 44(5): 0511001.
陈颖, 高光珍, 蔡廷栋. 基于光声光谱的乙烯探测技术 [J]. 中国激光. 2017, 44(5): 0511001.

【29】Zha S L, Ma H L, Zha C L, et al. Application of broadband photoacoustic spectroscopy in methane concentration detection [J]. Laser & Optoelectronics Progress. 2019, 56(4): 043001.
查申龙, 马宏亮, 查长礼, 等. 宽带光声光谱技术在甲烷浓度探测中的应用 [J]. 激光与光电子学进展. 2019, 56(4): 043001.

【30】Zhou Y, Cao Y, Zhu G D, et al. Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser [J]. Acta Physica Sinica. 2018, 67(8): 084201.
周彧, 曹渊, 朱公栋, 等. 基于7.6 μm量子级联激光的光声光谱探测N2O气体 [J]. 物理学报. 2018, 67(8): 084201.

【31】Zha S L, Liu K, Tan T, et al. Application of photoacoustic spectroscopy in multi-component gas concentration detection [J]. Acta Photonica Sinica. 2017, 46(6): 0612002.
查申龙, 刘锟, 谈图, 等. 光声光谱技术在多组分气体浓度探测中的应用 [J]. 光子学报. 2017, 46(6): 0612002.

【32】Hu L B, Liu K, Wang G S, et al. Research on detecting CO with quartz enhanced photoacoustic spectroscopy based on 2.33 μm distributed feed back laser [J]. Laser & Optoelectronics Progress. 2015, 52(5): 053002.
胡立兵, 刘锟, 王贵师, 等. 基于2.33 μm可调谐激光的石英音叉增强型光声光谱测量CO研究 [J]. 激光与光电子学进展. 2015, 52(5): 053002.

【33】Wysocki G, Kosterev A A, Tittel F K. Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 μm [J]. Applied Physics B. 2006, 85(2/3): 301-306.

【34】Schilt S, Besson J P, Thévenaz L. Near-infrared laser photoacoustic detection of methane: the impact of molecular relaxation [J]. Applied Physics B. 2006, 82(2): 319-328.

【35】Kalkman J, van Kesteren H W. Relaxation effects and high sensitivity photoacoustic detection of NO2 with a blue laser diode [J]. Applied Physics B. 2008, 90(2): 197-200.

引用该论文

Liu Xin,Zhang Ting,Zhang Gang,Gao Guangzhen,Cai Tingdong. Carbon Monoxide Detection Based on Photoacoustic Spectroscopy[J]. Chinese Journal of Lasers, 2020, 47(1): 0111002

刘新,张婷,张刚,高光珍,蔡廷栋. 基于光声光谱技术的CO气体探测[J]. 中国激光, 2020, 47(1): 0111002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF