首页 > 论文 > 激光与光电子学进展 > 57卷 > 20期(pp:200001--1)

高稳定性定量相位显微技术 (封面文章) (特邀综述)

Quantitative Phase Microscopy with High Stability (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

定量相位显微技术容易受到环境扰动的影响。如何克服环境扰动对量化相位成像的影响,一直是相位成像领域研究的热点。着重介绍了物参共路数字全息显微技术和单光束定量相位显微技术。前者主要包括斐索干涉显微、Mirau干涉显微、离轴和同轴点衍射干涉显微、双球面照明的数字全息显微和空间复用数字全息显微;后者主要包括共轴数字全息和基于平行光照明、超斜照明和多点离轴照明的定量相衬显微。希望该综述能为构建高稳定性、实用化定量相位显微装置提供有益参考。

Abstract

The quantitative phase microscopy is sensitive to environmental disturbance. It has been a hot topic that how to get rid of the influence of environmental disturbance on quantitative phase imaging. This review focuses on the common-path digital holography microscopy (DHM) and single beam quantitative phase microscopy. The former mainly includes Fizeau interference microscopy, Mirau interference microscopy, off-axis and coaxial point diffraction interference microscopy, DHM of double spherical illumination, and spatially-multiplexed DHM. The latter mainly includes coaxial digital holography, and quantitative phase-contrast microscopy based on parallel light illumination, ultra-oblique illumination, and multi-point off-axis illumination. We hope that this review will provide useful reference for the construction of high stability and practical quantitative phase microscopic devices.

广告组1.1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/LOP57.200001

所属栏目:综述

基金项目:国家自然科学基金、国家QR计划、陕西省自然科学基金、中国博士后科学基金、中央高校基本科研业务费专项资金;

收稿日期:2020-03-19

修改稿日期:2020-04-20

网络出版日期:2020-10-01

作者单位    点击查看

温凯:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
马英:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
张美玲:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
王宇:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
付驰:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
郑娟娟:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
刘立新:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
郜鹏:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
姚保利:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119

联系人作者:郜鹏(peng.gao@xidian.edu.cn)

备注:国家自然科学基金、国家QR计划、陕西省自然科学基金、中国博士后科学基金、中央高校基本科研业务费专项资金;

【1】Gabor D. A new microscopic principle [J]. Nature. 1948, 161(4098): 777-778.

【2】Schnars U, Juptner W. Direct recording of holograms by a CCD target and numerical reconstruction [J]. Applied Optics. 1994, 33(2): 179-181.

【3】Lin Y C, Chen H C, Tu H Y, et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy [J]. Optics Letters. 2017, 42(7): 1321-1324.

【4】Neutsch K. G?-ring L, Tranelis M J, et al. Three-dimensional particle localization with common-path digital holographic microscopy [J]. Proceedings of SPIE. 2019, 1094: 109440J.

【5】Kreis T. Handbook of holographic interferometry [M]. New Jersey: Wiley. 2004.

【6】Geng J. Three-dimensional display technologies [J]. Advances in Optics and Photonics. 2013, 5(4): 456-535.

【7】Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses [J]. Optics Letters. 2006, 31(11): 1705-1707.

【8】Lin X, Hao J Y, Wang K, et al. Frequency expanded non-interferometric phase retrieval for holographic data storage [J]. Optics Express. 2020, 28(1): 511-518.

【9】Yaroslavsky L. Digital holography and digital image processing: principles, methods, algorithms [M]. New York: Springer Science & Business Media. 2013.

【10】Li S, Wang D, Lu Y T. Method for improving imaging resolution of digital holographic adaptive optical system [J]. Chinese Journal of Lasers. 2019, 46(7): 0709001.
李顺, 王地, 陆彦婷. 一种提高数字全息自适应光学系统成像分辨率的方法 [J]. 中国激光. 2019, 46(7): 0709001.

【11】Yao L C, Wu X C, Lin X D, et al. Measurement of burning biomass particles via high-speed digital holography [J]. Laser & Optoelectronics Progress. 2019, 56(10): 100901.
姚龙超, 吴学成, 林小丹, 等. 基于高速数字全息的燃烧生物质颗粒测试 [J]. 激光与光电子学进展. 2019, 56(10): 100901.

【12】Sutkowski M, Kujawińska M. Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms [J]. Optics and Lasers in Engineering. 2000, 33(3): 191-201.

【13】Kohler C, Schwab X, Osten W. Optimally tuned spatial light modulators for digital holography [J]. Applied Optics. 2006, 45(5): 960-967.

【14】Zwick S, Haist T, Warber M, et al. Dynamic holography using pixelated light modulators [J]. Applied Optics. 2010, 49(25): F47-F58.

【15】Reicherter M, Haist T, Wagemann E U, et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display [J]. Optics Letters. 1999, 24(9): 608-610.

【16】DaneshPanah M, Zwick S, Schaal F, et al. 3D holographic imaging and trapping for non-invasive cell identification and tracking [J]. Journal of Display Technology. 2010, 6(10): 490-499.

【17】Yu H Q, Jia S H, Dong J, et al. Phase curvature compensation in digital holographic microscopy based on phase gradient fitting and optimization [J]. Journal of the Optical Society of America A. 2019, 36(12): D1-D6.

【18】Liu S, Lian Q S, Xu Z P. Phase aberration compensation for digital holographic microscopy based on double fitting and background segmentation [J]. Optics and Lasers in Engineering. 2019, 115: 238-242.

【19】Maurer C, Jesacher A, Bernet S, et al. What spatial light modulators can do for optical microscopy [J]. Laser & Photonics Reviews. 2011, 5(1): 81-101.

【20】Haist T, Hasler M, Osten W, et al. Programmable microscopy [M]. ∥ Bahram J, Enrique T, Pedro A. Multi-dimensional imaging. Chichester: John Wiley & Sons, Ltd. 2014, 153-173.

【21】Marquet P, Depeursinge C. Digital holographic microscopy: a new imaging technique to quantitatively explore cell dynamics with nanometer sensitivity [M]. ∥Multi-dimensional imaging. Chichester: John Wiley & Sons, Ltd. 2014, 197-223.

【22】Onural L, Yara? F, Kang H. Digital holographic three-dimensional video displays [J]. Proceedings of the IEEE. 2011, 99(4): 576-589.

【23】Lee B, Kim Y. Three-dimensional display and imaging: status and prospects [M]. ∥Optical imaging and metrology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. 2012, 31-56.

【24】Osten W, Baumbach T, Juptner W. Comparative digital holography [J]. Optics Letters. 2002, 27(20): 1764-1766.

【25】Baumbach T. Osten W, von Kopylow C, et al. Remote metrology by comparative digital holography [J]. Applied Optics. 2006, 45(5): 925-934.

【26】Mico V, Zheng J J, Garcia J, et al. Resolution enhancement in quantitative phase microscopy [J]. Advances in Optics and Photonics. 2019, 11(1): 135-214.

【27】Yaghoubi S H S, Ebrahimi S, Dashtdar M, et al. Common-path, single-shot phase-shifting digital holographic microscopy using a Ronchi ruling [J]. Applied Physics Letters. 2019, 114(18): 183701.

【28】Charriere F, Kuhn J, Colomb T, et al. Characterization of microlenses by digital holographic microscopy [J]. Applied Optics. 2006, 45(5): 829-835.

【29】Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection [J]. Applied Optics. 2008, 47(4): A52-A61.

【30】Park Y, Choi W, Yaqoob Z, et al. Speckle-field digital holographic microscopy [J]. Optics Express. 2009, 17(15): 12285-12292.

【31】Bertaux N, Frauel Y, Réfrégier P, et al. Speckle removal using a maximum-likelihood technique with isoline gray-level regularization [J]. Journal of the Optical Society of America A. 2004, 21(12): 2283-2291.

【32】Zhao J L, Yan X B, Sun W W, et al. Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states [J]. Optics Letters. 2010, 35(20): 3519-3521.

【33】Jiang H Z, Zhao J L, Di J L, et al. Reconstruction of synthetic aperture digital lensless Fourier transform hologram by use of the screen-division method [J]. Acta Optica Sinica. 2009, 29(12): 3304-3309.
姜宏振, 赵建林, 邸江磊, 等. 合成孔径数字无透镜傅里叶变换全息图的分幅再现 [J]. 光学学报. 2009, 29(12): 3304-3309.

【34】Cai L, Liu Q, Yang X. Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps [J]. Optics Letters. 2003, 28(19): 1808-1810.

【35】Meng X, Cai L, Xu X, et al. Two-step phase-shifting interferometry and its application in image encryption [J]. Optics Letters. 2006, 31(10): 1414-1416.

【36】Wang H Y, Liu J B, Wang D Y, et al. Autofocus for numerical reconstruction in digital holographic microscopy [J]. Acta Optica Sinica. 2008, 28(s2): 343-347.
王华英, 刘景波, 王大勇, 等. 显微数字全息数值再现中的自动聚焦 [J]. 光学学报. 2008, 28(s2): 343-347.

【37】Liu C G, Wang D Y, Zhang Y Z, et al. Derivatives-based autofocus algorithms for the digital holographic imaging [J]. Chinese Journal of Lasers. 2009, 36(11): 2989-2996.
刘长庚, 王大勇, 张亦卓, 等. 数字全息成像中基于导数的自动对焦算法 [J]. 中国激光. 2009, 36(11): 2989-2996.

【38】Yuan C J, Zhai H C, Wang X L, et al. Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object [J]. Optics Communications. 2007, 270(2): 176-179.

【39】Yan H, Long J, Liu C Y, et al. Review of the development and application of deformation measurement based on digital holography and digital speckle interferometry [J]. Infrared and Laser Engineering. 2019, 48(6): 0603010.
闫浩, 隆军, 刘驰越, 等. 数字全息技术及散斑干涉技术在形变测量领域的发展及应用 [J]. 红外与激光工程. 2019, 48(6): 0603010.

【40】Gao P, Yao B L, Min J W, et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters [J]. Optics Express. 2011, 19(3): 1930-1935.

【41】Min J W, Yao B L, Gao P, et al. Parallel phase-shifting interferometry based on Michelson-like architecture [J]. Applied Optics. 2010, 49(34): 6612-6616.

【42】Qu W J, Liu D A, Zhi Y N, et al. Visualization of domain inversion region characteristics in RuO2∶LiNbO3 crystal by digital holographic interferometry [J]. Acta Physica Sinica. 2006, 55(8): 4276-4281.
曲伟娟, 刘德安, 职亚楠, 等. 利用数字全息干涉术观察RuO2∶LiNbO3晶体中畴反转的区域特性 [J]. 物理学报. 2006, 55(8): 4276-4281.

【43】Li J, Peng Z. Statistic optics discussion on the formula of digital holographic 3D surface profiling measurement [J]. Measurement. 2010, 43(3): 381-384.

【44】Qian X F, Dong K P, Zhang L, et al. Study on cells by use of reflecting digital holographic microscopy [J]. Acta Photonica Sinica. 2007, 36(7): 1318-1321.
钱晓凡, 董可平, 张磊, 等. 反射式数字全息显微术对细胞的研究 [J]. 光子学报. 2007, 36(7): 1318-1321.

【45】Wang X G, Zhao D M, Jing F, et al. Information synthesis (complex amplitude addition and subtraction) and encryption with digital holography and virtual optics [J]. Optics Express. 2006, 14(4): 1476-1486.

【46】Liang M D, Chen L, Lin W T, et al. A speckle noise reduction method for lensless Fourier transform digital holography [J]. Laser & Optoelectronics Progress. 2018, 55(11): 110901.
梁明大, 陈丽, 林伟涛, 等. 一种无透镜傅里叶变换数字全息的散斑降噪方法 [J]. 激光与光电子学进展. 2018, 55(11): 110901.

【47】Popescu G, Ikeda T, Goda K, et al. Optical measurement of cell membrane tension [J]. Physical Review Letters. 2006, 97(21): 218101.

【48】Fizeau H. Recherches sur les modifications que subit la vitesse de la lumibre dans le verre sous l''''influence de la chaleur . Annales de Chimie et de Physique[J]. 1862, 66: 429-482.

【49】de Groot P J. Phase-shift calibration errors in interferometers with spherical Fizeau cavities [J]. Applied Optics. 1995, 34(16): 2856-2863.

【50】Schwider J. Fizeau-type multi-pass shack-hartmann-test [J]. Optics Express. 2008, 16(1): 362-372.

【51】Zhu W H, Chen L, Yang Y, et al. Advanced simultaneous phase-shifting Fizeau interferometer [J]. Optics & Laser Technology. 2019, 111: 134-139.

【52】Abdelsalam D G, Yao B L, Gao P, et al. Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry [J]. Applied Optics. 2012, 51(20): 4891-4895.

【53】-09-30 [P]. Mirau Andre H. Interferometer: US15215150A. 1952.

【54】Dobroiu A, Sakai H, Ootaki H, et al. Coaxial Mirau interferometer [J]. Optics Letters. 2002, 27(13): 1153-1155.

【55】Bhushan B, Wyant J C, Koliopoulos C L. Measurement of surface topography of magnetic tapes by Mirau interferometry [J]. Applied Optics. 1985, 24(10): 1489-1497.

【56】Mehta D S, Sharma A, Dubey V, et al. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement [J]. Proceedings of SPIE. 2016, 9718: 971828.

【57】Popescu G, Ikeda T, Dasari R R, et al. Diffraction phase microscopy for quantifying cell structure and dynamics [J]. Optics Letters. 2006, 31(6): 775-777.

【58】Akondi V, Jewel A R, Vohnsen B. Digital phase-shifting point diffraction interferometer [J]. Optics Letters. 2014, 39(6): 1641-1644.

【59】Wang D, Xie Z M, Wang C, et al. Probe misalignment calibration in fiber point-diffraction interferometer [J]. Optics Express. 2019, 27(23): 34312-34322.

【60】Shaked N T, Zhu Y Z, Rinehart M T, et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells [J]. Optics Express. 2009, 17(18): 15585-15591.

【61】Gao P, Harder I, Nercissian V, et al. Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy [J]. Optics Letters. 2010, 35(5): 712-714.

【62】Ronchi V. On the phase grating interferometer [J]. Applied Optics. 1965, 4(8): 1041-1042.

【63】Mico V, Zalevsky Z, Garcia J. Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator [J]. Optics Letters. 2012, 37(23): 4988-4990.

【64】Mico V, Ferreira C, Zalevsky Z, et al. Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one [J]. Optics Express. 2014, 22(12): 14929-14943.

【65】Picazo-Bueno J á, Micó V. Opposed-view spatially multiplexed interferometric microscopy [J]. Journal of Optics. 2019, 21(3): 035701.

【66】Mico V, Zalevsky Z, Garcia J. Superresolution optical system by common-path interferometry [J]. Optics Express. 2006, 14(12): 5168-5177.

【67】Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy [J]. Optics Letters. 2013, 38(8): 1328-1330.

【68】Platt B C, Shack R. History and principles of shack-hartmann wavefront sensing [J]. Journal of Refractive Surgery. 2001, 17(5): S573-S577.

【69】Rativa D, de Araujo R E, Gomes A S, et al. Hartmann-Shack wavefront sensing for nonlinear materials characterization [J]. Optics Express. 2009, 17(24): 22047-22053.

【70】Laude V, Olivier S, Dirson C, et al. Hartmann wave-front scanner [J]. Optics Letters. 1999, 24(24): 1796-1798.

【71】Rimmer M P, Wyant J C. Evaluation of large aberrations using a lateral-shear interferometer having variable shear [J]. Applied Optics. 1975, 14(1): 142-150.

【72】Liu X J, Gao Y S. Surface roughness profile measurement using shearing microscope interference method [J]. China Measurement Technology. 2004, 30(2): 3-5.
刘晓军, 高咏生. 显微剪切干涉表面粗糙度轮廓测量 [J]. 中国测试技术. 2004, 30(2): 3-5.

【73】Almoro P F, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field [J]. Applied Optics. 2006, 45(34): 8596-8605.

【74】Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes [J]. Optics Letters. 2005, 30(8): 833-835.

【75】Bao P, Zhang F C, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths [J]. Optics Letters. 2008, 33(4): 309-311.

【76】Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm [J]. Physical Review Letters. 2004, 93(2): 023903.

【77】Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination [J]. Applied Physics Letters. 2004, 85(20): 4795-4797.

【78】Zhang F C, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation [J]. Physical Review A. 2007, 75(4): 043805.

【79】Liu Y J, Chen B, Li E, et al. Phase retrieval in X-ray imaging based on using structured illumination [J]. Physical Review A. 2008, 78(2): 023817.

【80】Gao P, Pedrini G, Zuo C, et al. Phase retrieval using spatially modulated illumination [J]. Optics Letters. 2014, 39(12): 3615-3618.

【81】Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II [J]. Physica. 1942, 9(10): 974-986.

【82】Zheng J J, Yao B L, Gao P, et al. Phase contrast microscopy with fringe contrast adjustable by using grating-based phase-shifter [J]. Optics Express. 2012, 20(14): 16077-16082.

【83】Maurer C, Jesacher A, Bernet S, et al. Phase contrast microscopy with full numerical aperture illumination [J]. Optics Express. 2008, 16(24): 19821-19829.

【84】Gao P, Yao B L, Harder I, et al. Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement [J]. Optics Letters. 2011, 36(21): 4305-4307.

【85】Latychevskaia T, Fink H. Solution to the twin image problem in holography [J]. Physical Review Letters. 2007, 98(23): 233901.

【86】Rong L, Li Y, Liu S, et al. Iterative solution to twin image problem in in-line digital holography [J]. Optics and Lasers in Engineering. 2013, 51(5): 553-559.

【87】Gaur C, Mohan B, Khare K. Sparsity-assisted solution to the twin image problem in phase retrieval [J]. Journal of the Optical Society of America A-Optics Image Science and Vision. 2015, 32(11): 1922-1927.

【88】Cho C, Choi B, Kang H, et al. Numerical twin image suppression by nonlinear segmentation mask in digital holography [J]. Optics Express. 2012, 20(20): 22454-22464.

【89】Rivenson Y, Zhang Y B, Gunaydin H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks [J]. Light-Science & Applications. 2018, 7(2): 17141.

【90】Zhang W H, Cao L C, Brady D J, et al. Twin-image-free holography: a compressive sensing approach [J]. Physical Review Letters. 2018, 121(9): 093902.

【91】Yu Y J, Lin X Y, Wu X Y. Tomographic reconstruction of magnified in-line hologram based on compressive sensing [J]. Infrared and Laser Engineering. 2019, 48(6): 0603017.
于瀛洁, 林星羽, 伍小燕. 放大同轴全息图压缩传感层析重建 [J]. 红外与激光工程. 2019, 48(6): 0603017.

【92】Popescu G, Deflores L P, Vaughan J C, et al. Fourier phase microscopy for investigation of biological structures and dynamics [J]. Optics Letters. 2004, 29(21): 2503-2505.

【93】North-Morris M B, Millerd J E, Brock N J, et al. Phase-shifting multiwavelength dynamic interferometer [J]. Proceedings of SPIE. 2004, 5531: 64-75.

【94】Novak M, Millerd J E, Brock N, et al. Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer [J]. Applied Optics. 2005, 44(32): 6861-6868.

【95】Millerd J, Brock N, Hayes J, et al. Pixelated phase-mask dynamic interferometers [M]. Berlin/Heidelberg: Springer-Verlag. 2005, 640-647.

【96】Millerd J E, Brock N J, Hayes J B, et al. Instantaneous phase-shift point-diffraction interferometer [J]. Proceedings of SPIE. 2004, 5531: 264-272.

【97】Jensen M A, Nordin G P. Finite-aperture wire grid polarizers [J]. Journal of the Optical Society of America A. 2000, 17(12): 2191-2198.

【98】Stenkamp B, Abraham M, Ehrfeld W, et al. Grid polarizer for the visible spectral region [J]. Proceedings of SPIE. 1994, 2213: 288-296.

【99】Clausnitzer T, Fuchs H J, Kley E B, et al. Polarizing metal stripe gratings for a micro-optical polarimeter [J]. Proceedings of SPIE. 2003, 5183: 8-15.

【100】Wang Z, Millet L, Mir M, et al. Spatial light interference microscopy (SLIM) [J]. Optics Express. 2011, 19(2): 1016-1026.

【101】Ma Y, Guo S Y, Pan Y, et al. Quantitative phase microscopy with enhanced contrast and improved resolution through ultra-oblique illumination (UO-QPM) [J]. Journal of Biophotonics. 2019, 12(10): e201900011.

【102】Nguyen T H, Popescu G. Spatial Light Interference Microscopy (SLIM) using twisted-nematic liquid-crystal modulation [J]. Biomedical Optics Express. 2013, 4(9): 1571-1583.

【103】Majeed H, Nguyen T H, Kandel M E, et al. Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM) [J]. Scientific Reports. 2018, 8(1): 6875.

引用该论文

Wen Kai,Ma Ying,Zhang Meiling,Wang Yu,Fu Chi,Zheng Juanjuan,Liu Lixin,Gao Peng,Yao Baoli. Quantitative Phase Microscopy with High Stability[J]. Laser & Optoelectronics Progress, 2020, 57(20): 200001

温凯,马英,张美玲,王宇,付驰,郑娟娟,刘立新,郜鹏,姚保利. 高稳定性定量相位显微技术[J]. 激光与光电子学进展, 2020, 57(20): 200001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF